This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdifsn | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( ω ≼ 𝐴 → ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐴 ∈ V ) |
| 6 | simplr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 7 | f1f | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω ⟶ 𝐴 ) | |
| 8 | 7 | adantl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω ⟶ 𝐴 ) |
| 9 | peano1 | ⊢ ∅ ∈ ω | |
| 10 | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∅ ∈ ω ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
| 12 | difsnen | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐴 ∧ ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) | |
| 13 | 5 6 11 12 | syl3anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 14 | vex | ⊢ 𝑓 ∈ V | |
| 15 | f1f1orn | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω –1-1-onto→ ran 𝑓 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω –1-1-onto→ ran 𝑓 ) |
| 17 | f1oen3g | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : ω –1-1-onto→ ran 𝑓 ) → ω ≈ ran 𝑓 ) | |
| 18 | 14 16 17 | sylancr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ran 𝑓 ) |
| 19 | 18 | ensymd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ≈ ω ) |
| 20 | 3 | brrelex1i | ⊢ ( ω ≼ 𝐴 → ω ∈ V ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ∈ V ) |
| 22 | limom | ⊢ Lim ω | |
| 23 | 22 | limenpsi | ⊢ ( ω ∈ V → ω ≈ ( ω ∖ { ∅ } ) ) |
| 24 | 21 23 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ( ω ∖ { ∅ } ) ) |
| 25 | 14 | resex | ⊢ ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) ∈ V |
| 26 | simpr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω –1-1→ 𝐴 ) | |
| 27 | difss | ⊢ ( ω ∖ { ∅ } ) ⊆ ω | |
| 28 | f1ores | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ ( ω ∖ { ∅ } ) ⊆ ω ) → ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
| 30 | f1oen3g | ⊢ ( ( ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) ∈ V ∧ ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) → ( ω ∖ { ∅ } ) ≈ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) | |
| 31 | 25 29 30 | sylancr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ω ∖ { ∅ } ) ≈ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
| 32 | f1orn | ⊢ ( 𝑓 : ω –1-1-onto→ ran 𝑓 ↔ ( 𝑓 Fn ω ∧ Fun ◡ 𝑓 ) ) | |
| 33 | 32 | simprbi | ⊢ ( 𝑓 : ω –1-1-onto→ ran 𝑓 → Fun ◡ 𝑓 ) |
| 34 | imadif | ⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) ) | |
| 35 | 16 33 34 | 3syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) ) |
| 36 | f1fn | ⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 Fn ω ) | |
| 37 | 36 | adantl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 Fn ω ) |
| 38 | fnima | ⊢ ( 𝑓 Fn ω → ( 𝑓 “ ω ) = ran 𝑓 ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ω ) = ran 𝑓 ) |
| 40 | fnsnfv | ⊢ ( ( 𝑓 Fn ω ∧ ∅ ∈ ω ) → { ( 𝑓 ‘ ∅ ) } = ( 𝑓 “ { ∅ } ) ) | |
| 41 | 37 9 40 | sylancl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → { ( 𝑓 ‘ ∅ ) } = ( 𝑓 “ { ∅ } ) ) |
| 42 | 41 | eqcomd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ { ∅ } ) = { ( 𝑓 ‘ ∅ ) } ) |
| 43 | 39 42 | difeq12d | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) = ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 44 | 35 43 | eqtrd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 45 | 31 44 | breqtrd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ω ∖ { ∅ } ) ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 46 | entr | ⊢ ( ( ω ≈ ( ω ∖ { ∅ } ) ∧ ( ω ∖ { ∅ } ) ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) → ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) | |
| 47 | 24 45 46 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 48 | entr | ⊢ ( ( ran 𝑓 ≈ ω ∧ ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) → ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) | |
| 49 | 19 47 48 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 50 | difexg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ ran 𝑓 ) ∈ V ) | |
| 51 | enrefg | ⊢ ( ( 𝐴 ∖ ran 𝑓 ) ∈ V → ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) | |
| 52 | 5 50 51 | 3syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) |
| 53 | disjdif | ⊢ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ | |
| 54 | 53 | a1i | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) |
| 55 | difss | ⊢ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ⊆ ran 𝑓 | |
| 56 | ssrin | ⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ⊆ ran 𝑓 → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) ) | |
| 57 | 55 56 | ax-mp | ⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) |
| 58 | sseq0 | ⊢ ( ( ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) ∧ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) | |
| 59 | 57 53 58 | mp2an | ⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ |
| 60 | 59 | a1i | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) |
| 61 | unen | ⊢ ( ( ( ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∧ ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) ∧ ( ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ∧ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) ≈ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) ) | |
| 62 | 49 52 54 60 61 | syl22anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) ≈ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) ) |
| 63 | 8 | frnd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ⊆ 𝐴 ) |
| 64 | undif | ⊢ ( ran 𝑓 ⊆ 𝐴 ↔ ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) = 𝐴 ) | |
| 65 | 63 64 | sylib | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) = 𝐴 ) |
| 66 | uncom | ⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) = ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) | |
| 67 | eldifn | ⊢ ( ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) → ¬ ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) | |
| 68 | fnfvelrn | ⊢ ( ( 𝑓 Fn ω ∧ ∅ ∈ ω ) → ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) | |
| 69 | 37 9 68 | sylancl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) |
| 70 | 67 69 | nsyl3 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ¬ ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) ) |
| 71 | disjsn | ⊢ ( ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ ↔ ¬ ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) ) | |
| 72 | 70 71 | sylibr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ ) |
| 73 | undif4 | ⊢ ( ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 75 | uncom | ⊢ ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) = ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) | |
| 76 | 75 65 | eqtrid | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) = 𝐴 ) |
| 77 | 76 | difeq1d | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 78 | 74 77 | eqtrd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 79 | 66 78 | eqtrid | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 80 | 62 65 79 | 3brtr3d | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
| 81 | 80 | ensymd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ≈ 𝐴 ) |
| 82 | entr | ⊢ ( ( ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ∧ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ≈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) | |
| 83 | 13 81 82 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
| 84 | 2 83 | exlimddv | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
| 85 | difsn | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∖ { 𝐵 } ) = 𝐴 ) | |
| 86 | 85 | adantl | ⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) = 𝐴 ) |
| 87 | enrefg | ⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) | |
| 88 | 4 87 | syl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≈ 𝐴 ) |
| 89 | 88 | adantr | ⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → 𝐴 ≈ 𝐴 ) |
| 90 | 86 89 | eqbrtrd | ⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
| 91 | 84 90 | pm2.61dan | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |