This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limenpsi.1 | ⊢ Lim 𝐴 | |
| Assertion | limenpsi | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limenpsi.1 | ⊢ Lim 𝐴 | |
| 2 | difexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ∈ V ) | |
| 3 | limsuc | ⊢ ( Lim 𝐴 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) ) | |
| 4 | 1 3 | ax-mp | ⊢ ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) |
| 5 | 4 | biimpi | ⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) |
| 6 | nsuceq0 | ⊢ suc 𝑥 ≠ ∅ | |
| 7 | eldifsn | ⊢ ( suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅ ) ) | |
| 8 | 5 6 7 | sylanblrc | ⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ) |
| 9 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 10 | 1 9 | ax-mp | ⊢ Ord 𝐴 |
| 11 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 12 | 10 11 | mpan | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
| 13 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 14 | 10 13 | mpan | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ On ) |
| 15 | suc11 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 16 | 12 14 15 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 17 | 8 16 | dom3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∖ { ∅ } ) ∈ V ) → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
| 18 | 2 17 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
| 19 | difss | ⊢ ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 | |
| 20 | ssdomg | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) ) | |
| 21 | 19 20 | mpi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) |
| 22 | sbth | ⊢ ( ( 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ∧ ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) | |
| 23 | 18 21 22 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |