This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdifsn | |- ( _om ~<_ A -> ( A \ { B } ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( _om ~<_ A -> E. f f : _om -1-1-> A ) |
|
| 2 | 1 | adantr | |- ( ( _om ~<_ A /\ B e. A ) -> E. f f : _om -1-1-> A ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 5 | 4 | ad2antrr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A e. _V ) |
| 6 | simplr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> B e. A ) |
|
| 7 | f1f | |- ( f : _om -1-1-> A -> f : _om --> A ) |
|
| 8 | 7 | adantl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om --> A ) |
| 9 | peano1 | |- (/) e. _om |
|
| 10 | ffvelcdm | |- ( ( f : _om --> A /\ (/) e. _om ) -> ( f ` (/) ) e. A ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. A ) |
| 12 | difsnen | |- ( ( A e. _V /\ B e. A /\ ( f ` (/) ) e. A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
|
| 13 | 5 6 11 12 | syl3anc | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
| 14 | vex | |- f e. _V |
|
| 15 | f1f1orn | |- ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) |
|
| 16 | 15 | adantl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-onto-> ran f ) |
| 17 | f1oen3g | |- ( ( f e. _V /\ f : _om -1-1-onto-> ran f ) -> _om ~~ ran f ) |
|
| 18 | 14 16 17 | sylancr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ran f ) |
| 19 | 18 | ensymd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ _om ) |
| 20 | 3 | brrelex1i | |- ( _om ~<_ A -> _om e. _V ) |
| 21 | 20 | ad2antrr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om e. _V ) |
| 22 | limom | |- Lim _om |
|
| 23 | 22 | limenpsi | |- ( _om e. _V -> _om ~~ ( _om \ { (/) } ) ) |
| 24 | 21 23 | syl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( _om \ { (/) } ) ) |
| 25 | 14 | resex | |- ( f |` ( _om \ { (/) } ) ) e. _V |
| 26 | simpr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-> A ) |
|
| 27 | difss | |- ( _om \ { (/) } ) C_ _om |
|
| 28 | f1ores | |- ( ( f : _om -1-1-> A /\ ( _om \ { (/) } ) C_ _om ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
|
| 29 | 26 27 28 | sylancl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
| 30 | f1oen3g | |- ( ( ( f |` ( _om \ { (/) } ) ) e. _V /\ ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
|
| 31 | 25 29 30 | sylancr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
| 32 | f1orn | |- ( f : _om -1-1-onto-> ran f <-> ( f Fn _om /\ Fun `' f ) ) |
|
| 33 | 32 | simprbi | |- ( f : _om -1-1-onto-> ran f -> Fun `' f ) |
| 34 | imadif | |- ( Fun `' f -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
|
| 35 | 16 33 34 | 3syl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
| 36 | f1fn | |- ( f : _om -1-1-> A -> f Fn _om ) |
|
| 37 | 36 | adantl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f Fn _om ) |
| 38 | fnima | |- ( f Fn _om -> ( f " _om ) = ran f ) |
|
| 39 | 37 38 | syl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " _om ) = ran f ) |
| 40 | fnsnfv | |- ( ( f Fn _om /\ (/) e. _om ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
|
| 41 | 37 9 40 | sylancl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
| 42 | 41 | eqcomd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " { (/) } ) = { ( f ` (/) ) } ) |
| 43 | 39 42 | difeq12d | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( f " _om ) \ ( f " { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
| 44 | 35 43 | eqtrd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
| 45 | 31 44 | breqtrd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 46 | entr | |- ( ( _om ~~ ( _om \ { (/) } ) /\ ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
|
| 47 | 24 45 46 | syl2anc | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 48 | entr | |- ( ( ran f ~~ _om /\ _om ~~ ( ran f \ { ( f ` (/) ) } ) ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
|
| 49 | 19 47 48 | syl2anc | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 50 | difexg | |- ( A e. _V -> ( A \ ran f ) e. _V ) |
|
| 51 | enrefg | |- ( ( A \ ran f ) e. _V -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
|
| 52 | 5 50 51 | 3syl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
| 53 | disjdif | |- ( ran f i^i ( A \ ran f ) ) = (/) |
|
| 54 | 53 | a1i | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f i^i ( A \ ran f ) ) = (/) ) |
| 55 | difss | |- ( ran f \ { ( f ` (/) ) } ) C_ ran f |
|
| 56 | ssrin | |- ( ( ran f \ { ( f ` (/) ) } ) C_ ran f -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) ) |
|
| 57 | 55 56 | ax-mp | |- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) |
| 58 | sseq0 | |- ( ( ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) /\ ( ran f i^i ( A \ ran f ) ) = (/) ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
|
| 59 | 57 53 58 | mp2an | |- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) |
| 60 | 59 | a1i | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
| 61 | unen | |- ( ( ( ran f ~~ ( ran f \ { ( f ` (/) ) } ) /\ ( A \ ran f ) ~~ ( A \ ran f ) ) /\ ( ( ran f i^i ( A \ ran f ) ) = (/) /\ ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
|
| 62 | 49 52 54 60 61 | syl22anc | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
| 63 | 8 | frnd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f C_ A ) |
| 64 | undif | |- ( ran f C_ A <-> ( ran f u. ( A \ ran f ) ) = A ) |
|
| 65 | 63 64 | sylib | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) = A ) |
| 66 | uncom | |- ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) |
|
| 67 | eldifn | |- ( ( f ` (/) ) e. ( A \ ran f ) -> -. ( f ` (/) ) e. ran f ) |
|
| 68 | fnfvelrn | |- ( ( f Fn _om /\ (/) e. _om ) -> ( f ` (/) ) e. ran f ) |
|
| 69 | 37 9 68 | sylancl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. ran f ) |
| 70 | 67 69 | nsyl3 | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> -. ( f ` (/) ) e. ( A \ ran f ) ) |
| 71 | disjsn | |- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) <-> -. ( f ` (/) ) e. ( A \ ran f ) ) |
|
| 72 | 70 71 | sylibr | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) ) |
| 73 | undif4 | |- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
|
| 74 | 72 73 | syl | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
| 75 | uncom | |- ( ( A \ ran f ) u. ran f ) = ( ran f u. ( A \ ran f ) ) |
|
| 76 | 75 65 | eqtrid | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ran f ) = A ) |
| 77 | 76 | difeq1d | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) = ( A \ { ( f ` (/) ) } ) ) |
| 78 | 74 77 | eqtrd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( A \ { ( f ` (/) ) } ) ) |
| 79 | 66 78 | eqtrid | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( A \ { ( f ` (/) ) } ) ) |
| 80 | 62 65 79 | 3brtr3d | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A ~~ ( A \ { ( f ` (/) ) } ) ) |
| 81 | 80 | ensymd | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { ( f ` (/) ) } ) ~~ A ) |
| 82 | entr | |- ( ( ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) /\ ( A \ { ( f ` (/) ) } ) ~~ A ) -> ( A \ { B } ) ~~ A ) |
|
| 83 | 13 81 82 | syl2anc | |- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ A ) |
| 84 | 2 83 | exlimddv | |- ( ( _om ~<_ A /\ B e. A ) -> ( A \ { B } ) ~~ A ) |
| 85 | difsn | |- ( -. B e. A -> ( A \ { B } ) = A ) |
|
| 86 | 85 | adantl | |- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) = A ) |
| 87 | enrefg | |- ( A e. _V -> A ~~ A ) |
|
| 88 | 4 87 | syl | |- ( _om ~<_ A -> A ~~ A ) |
| 89 | 88 | adantr | |- ( ( _om ~<_ A /\ -. B e. A ) -> A ~~ A ) |
| 90 | 86 89 | eqbrtrd | |- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) ~~ A ) |
| 91 | 84 90 | pm2.61dan | |- ( _om ~<_ A -> ( A \ { B } ) ~~ A ) |