This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnen | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ { 𝐴 } ) ∈ V ) | |
| 2 | enrefg | ⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 5 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
| 6 | 5 | difeq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) |
| 7 | 6 | breq2d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) ) |
| 8 | 4 7 | syl5ibcom | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 = 𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 10 | simpl1 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ 𝑉 ) | |
| 11 | difexg | ⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V ) | |
| 12 | enrefg | ⊢ ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ) | |
| 13 | 10 1 11 12 | 4syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ) |
| 14 | dif32 | ⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) = ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) | |
| 15 | 13 14 | breqtrdi | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ) |
| 16 | simpl3 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑋 ) | |
| 17 | simpl2 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑋 ) | |
| 18 | en2sn | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → { 𝐵 } ≈ { 𝐴 } ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐵 } ≈ { 𝐴 } ) |
| 20 | disjdifr | ⊢ ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ | |
| 21 | 20 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ ) |
| 22 | disjdifr | ⊢ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ | |
| 23 | 22 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ ) |
| 24 | unen | ⊢ ( ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∧ { 𝐵 } ≈ { 𝐴 } ) ∧ ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ ∧ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ ) ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) ) | |
| 25 | 15 19 21 23 24 | syl22anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) ) |
| 26 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) | |
| 27 | 26 | necomd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| 28 | eldifsn | ⊢ ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐵 ≠ 𝐴 ) ) | |
| 29 | 16 27 28 | sylanbrc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 30 | difsnid | ⊢ ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) ) |
| 32 | eldifsn | ⊢ ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) | |
| 33 | 17 26 32 | sylanbrc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 34 | difsnid | ⊢ ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) |
| 36 | 25 31 35 | 3brtr3d | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 37 | 9 36 | pm2.61dane | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |