This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute union over difference. (Contributed by NM, 17-May-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif4 | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.621 | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) → ¬ 𝑥 ∈ 𝐶 ) ) | |
| 2 | olc | ⊢ ( ¬ 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 3 | 1 2 | impbid1 | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ↔ ¬ 𝑥 ∈ 𝐶 ) ) |
| 4 | 3 | anbi2d | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 5 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 6 | 5 | orbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 7 | ordi | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 9 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 10 | 9 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) |
| 11 | 4 8 10 | 3bitr4g | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 12 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 13 | eldif | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 14 | 11 12 13 | 3bitr4g | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ) ) |
| 15 | 14 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) → ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ) ) |
| 16 | disj1 | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) | |
| 17 | dfcleq | ⊢ ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ) ) | |
| 18 | 15 16 17 | 3imtr4i | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) ) |