This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdiffi | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∅ ) ) | |
| 2 | dif0 | ⊢ ( 𝐴 ∖ ∅ ) = 𝐴 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∖ 𝑥 ) = 𝐴 ) |
| 4 | 3 | breq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ↔ 𝐴 ≈ 𝐴 ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ) ↔ ( ω ≼ 𝐴 → 𝐴 ≈ 𝐴 ) ) ) |
| 6 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ↔ ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ) ↔ ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) ) ) |
| 9 | difeq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 10 | difun1 | ⊢ ( 𝐴 ∖ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ∖ 𝑥 ) = ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ) |
| 12 | 11 | breq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ↔ ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ) ↔ ( ω ≼ 𝐴 → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) ) ) |
| 14 | difeq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐵 ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ↔ ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑥 ) ≈ 𝐴 ) ↔ ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) ) ) |
| 17 | reldom | ⊢ Rel ≼ | |
| 18 | 17 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 19 | enrefg | ⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) | |
| 20 | 18 19 | syl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≈ 𝐴 ) |
| 21 | domen2 | ⊢ ( ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 → ( ω ≼ ( 𝐴 ∖ 𝑦 ) ↔ ω ≼ 𝐴 ) ) | |
| 22 | 21 | biimparc | ⊢ ( ( ω ≼ 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ω ≼ ( 𝐴 ∖ 𝑦 ) ) |
| 23 | infdifsn | ⊢ ( ω ≼ ( 𝐴 ∖ 𝑦 ) → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ ( 𝐴 ∖ 𝑦 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ ( 𝐴 ∖ 𝑦 ) ) |
| 25 | entr | ⊢ ( ( ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ ( 𝐴 ∖ 𝑦 ) ∧ ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) | |
| 26 | 24 25 | sylancom | ⊢ ( ( ω ≼ 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) |
| 27 | 26 | ex | ⊢ ( ω ≼ 𝐴 → ( ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) ) |
| 28 | 27 | a2i | ⊢ ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ( ω ≼ 𝐴 → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) ) |
| 29 | 28 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝑦 ) ≈ 𝐴 ) → ( ω ≼ 𝐴 → ( ( 𝐴 ∖ 𝑦 ) ∖ { 𝑧 } ) ≈ 𝐴 ) ) ) |
| 30 | 5 8 13 16 20 29 | findcard2 | ⊢ ( 𝐵 ∈ Fin → ( ω ≼ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) ) |
| 31 | 30 | impcom | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |