This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashgcdlem.a | ⊢ 𝐴 = { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } | |
| hashgcdlem.b | ⊢ 𝐵 = { 𝑧 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑧 gcd 𝑀 ) = 𝑁 } | ||
| hashgcdlem.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 · 𝑁 ) ) | ||
| Assertion | hashgcdlem | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.a | ⊢ 𝐴 = { 𝑦 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 } | |
| 2 | hashgcdlem.b | ⊢ 𝐵 = { 𝑧 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑧 gcd 𝑀 ) = 𝑁 } | |
| 3 | hashgcdlem.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 · 𝑁 ) ) | |
| 4 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 ↔ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) |
| 6 | 5 1 | elrab2 | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) |
| 7 | elfzonn0 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) → 𝑥 ∈ ℕ0 ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑥 ∈ ℕ0 ) |
| 9 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ∈ ℕ0 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑁 ∈ ℕ0 ) |
| 12 | 8 11 | nn0mulcld | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑥 · 𝑁 ) ∈ ℕ0 ) |
| 13 | simpl1 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑀 ∈ ℕ ) | |
| 14 | elfzolt2 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) → 𝑥 < ( 𝑀 / 𝑁 ) ) | |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑥 < ( 𝑀 / 𝑁 ) ) |
| 16 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) → 𝑥 ∈ ℤ ) | |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑥 ∈ ℤ ) |
| 18 | 17 | zred | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑥 ∈ ℝ ) |
| 19 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑀 ∈ ℝ ) |
| 22 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 23 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 24 | 22 23 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 27 | ltmuldiv | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑥 · 𝑁 ) < 𝑀 ↔ 𝑥 < ( 𝑀 / 𝑁 ) ) ) | |
| 28 | 18 21 26 27 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 · 𝑁 ) < 𝑀 ↔ 𝑥 < ( 𝑀 / 𝑁 ) ) ) |
| 29 | 15 28 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑥 · 𝑁 ) < 𝑀 ) |
| 30 | elfzo0 | ⊢ ( ( 𝑥 · 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( ( 𝑥 · 𝑁 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ ( 𝑥 · 𝑁 ) < 𝑀 ) ) | |
| 31 | 12 13 29 30 | syl3anbrc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑥 · 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 32 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑀 ∈ ℂ ) |
| 34 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ∈ ℂ ) |
| 36 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ≠ 0 ) |
| 38 | 33 35 37 | divcan1d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( ( 𝑀 / 𝑁 ) · 𝑁 ) = 𝑀 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) · 𝑁 ) = 𝑀 ) |
| 40 | 39 | eqcomd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → 𝑀 = ( ( 𝑀 / 𝑁 ) · 𝑁 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 · 𝑁 ) gcd 𝑀 ) = ( ( 𝑥 · 𝑁 ) gcd ( ( 𝑀 / 𝑁 ) · 𝑁 ) ) ) |
| 42 | nndivdvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ 𝑀 ↔ ( 𝑀 / 𝑁 ) ∈ ℕ ) ) | |
| 43 | 42 | biimp3a | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 𝑀 / 𝑁 ) ∈ ℕ ) |
| 44 | 43 | nnzd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 𝑀 / 𝑁 ) ∈ ℤ ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑀 / 𝑁 ) ∈ ℤ ) |
| 46 | mulgcdr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑀 / 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑥 · 𝑁 ) gcd ( ( 𝑀 / 𝑁 ) · 𝑁 ) ) = ( ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) | |
| 47 | 17 45 11 46 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 · 𝑁 ) gcd ( ( 𝑀 / 𝑁 ) · 𝑁 ) ) = ( ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) |
| 48 | simprr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) | |
| 49 | 48 | oveq1d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) · 𝑁 ) = ( 1 · 𝑁 ) ) |
| 50 | 35 | mullidd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 52 | 49 51 | eqtrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) · 𝑁 ) = 𝑁 ) |
| 53 | 41 47 52 | 3eqtrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( ( 𝑥 · 𝑁 ) gcd 𝑀 ) = 𝑁 ) |
| 54 | oveq1 | ⊢ ( 𝑧 = ( 𝑥 · 𝑁 ) → ( 𝑧 gcd 𝑀 ) = ( ( 𝑥 · 𝑁 ) gcd 𝑀 ) ) | |
| 55 | 54 | eqeq1d | ⊢ ( 𝑧 = ( 𝑥 · 𝑁 ) → ( ( 𝑧 gcd 𝑀 ) = 𝑁 ↔ ( ( 𝑥 · 𝑁 ) gcd 𝑀 ) = 𝑁 ) ) |
| 56 | 55 2 | elrab2 | ⊢ ( ( 𝑥 · 𝑁 ) ∈ 𝐵 ↔ ( ( 𝑥 · 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑥 · 𝑁 ) gcd 𝑀 ) = 𝑁 ) ) |
| 57 | 31 53 56 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( 𝑥 gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) → ( 𝑥 · 𝑁 ) ∈ 𝐵 ) |
| 58 | 6 57 | sylan2b | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 · 𝑁 ) ∈ 𝐵 ) |
| 59 | oveq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 gcd 𝑀 ) = ( 𝑤 gcd 𝑀 ) ) | |
| 60 | 59 | eqeq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 gcd 𝑀 ) = 𝑁 ↔ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) |
| 61 | 60 2 | elrab2 | ⊢ ( 𝑤 ∈ 𝐵 ↔ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) |
| 62 | simprr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 gcd 𝑀 ) = 𝑁 ) | |
| 63 | elfzoelz | ⊢ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) → 𝑤 ∈ ℤ ) | |
| 64 | 63 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑤 ∈ ℤ ) |
| 65 | simpl1 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑀 ∈ ℕ ) | |
| 66 | 65 | nnzd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 67 | gcddvds | ⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 68 | 64 66 67 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 69 | 68 | simpld | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ) |
| 70 | 62 69 | eqbrtrrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ∥ 𝑤 ) |
| 71 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 72 | 71 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 74 | 37 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ≠ 0 ) |
| 75 | dvdsval2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ ) → ( 𝑁 ∥ 𝑤 ↔ ( 𝑤 / 𝑁 ) ∈ ℤ ) ) | |
| 76 | 73 74 64 75 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑁 ∥ 𝑤 ↔ ( 𝑤 / 𝑁 ) ∈ ℤ ) ) |
| 77 | 70 76 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 / 𝑁 ) ∈ ℤ ) |
| 78 | elfzofz | ⊢ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) → 𝑤 ∈ ( 0 ... 𝑀 ) ) | |
| 79 | 78 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑤 ∈ ( 0 ... 𝑀 ) ) |
| 80 | elfznn0 | ⊢ ( 𝑤 ∈ ( 0 ... 𝑀 ) → 𝑤 ∈ ℕ0 ) | |
| 81 | nn0re | ⊢ ( 𝑤 ∈ ℕ0 → 𝑤 ∈ ℝ ) | |
| 82 | nn0ge0 | ⊢ ( 𝑤 ∈ ℕ0 → 0 ≤ 𝑤 ) | |
| 83 | 81 82 | jca | ⊢ ( 𝑤 ∈ ℕ0 → ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ) ) |
| 84 | 79 80 83 | 3syl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ) ) |
| 85 | 25 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 86 | divge0 | ⊢ ( ( ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → 0 ≤ ( 𝑤 / 𝑁 ) ) | |
| 87 | 84 85 86 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 0 ≤ ( 𝑤 / 𝑁 ) ) |
| 88 | elnn0z | ⊢ ( ( 𝑤 / 𝑁 ) ∈ ℕ0 ↔ ( ( 𝑤 / 𝑁 ) ∈ ℤ ∧ 0 ≤ ( 𝑤 / 𝑁 ) ) ) | |
| 89 | 77 87 88 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 / 𝑁 ) ∈ ℕ0 ) |
| 90 | 43 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑀 / 𝑁 ) ∈ ℕ ) |
| 91 | elfzolt2 | ⊢ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) → 𝑤 < 𝑀 ) | |
| 92 | 91 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑤 < 𝑀 ) |
| 93 | 64 | zred | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑤 ∈ ℝ ) |
| 94 | 20 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 95 | ltdiv1 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑤 < 𝑀 ↔ ( 𝑤 / 𝑁 ) < ( 𝑀 / 𝑁 ) ) ) | |
| 96 | 93 94 85 95 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 < 𝑀 ↔ ( 𝑤 / 𝑁 ) < ( 𝑀 / 𝑁 ) ) ) |
| 97 | 92 96 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 / 𝑁 ) < ( 𝑀 / 𝑁 ) ) |
| 98 | elfzo0 | ⊢ ( ( 𝑤 / 𝑁 ) ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ↔ ( ( 𝑤 / 𝑁 ) ∈ ℕ0 ∧ ( 𝑀 / 𝑁 ) ∈ ℕ ∧ ( 𝑤 / 𝑁 ) < ( 𝑀 / 𝑁 ) ) ) | |
| 99 | 89 90 97 98 | syl3anbrc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 / 𝑁 ) ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ) |
| 100 | 62 | oveq1d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( ( 𝑤 gcd 𝑀 ) / 𝑁 ) = ( 𝑁 / 𝑁 ) ) |
| 101 | simpl2 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ∈ ℕ ) | |
| 102 | simpl3 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → 𝑁 ∥ 𝑀 ) | |
| 103 | gcddiv | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑁 ∥ 𝑤 ∧ 𝑁 ∥ 𝑀 ) ) → ( ( 𝑤 gcd 𝑀 ) / 𝑁 ) = ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) ) | |
| 104 | 64 66 101 70 102 103 | syl32anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( ( 𝑤 gcd 𝑀 ) / 𝑁 ) = ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) ) |
| 105 | 35 37 | dividd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → ( 𝑁 / 𝑁 ) = 1 ) |
| 106 | 105 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑁 / 𝑁 ) = 1 ) |
| 107 | 100 104 106 | 3eqtr3d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) = 1 ) |
| 108 | oveq1 | ⊢ ( 𝑦 = ( 𝑤 / 𝑁 ) → ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) ) | |
| 109 | 108 | eqeq1d | ⊢ ( 𝑦 = ( 𝑤 / 𝑁 ) → ( ( 𝑦 gcd ( 𝑀 / 𝑁 ) ) = 1 ↔ ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) |
| 110 | 109 1 | elrab2 | ⊢ ( ( 𝑤 / 𝑁 ) ∈ 𝐴 ↔ ( ( 𝑤 / 𝑁 ) ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ ( ( 𝑤 / 𝑁 ) gcd ( 𝑀 / 𝑁 ) ) = 1 ) ) |
| 111 | 99 107 110 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑤 gcd 𝑀 ) = 𝑁 ) ) → ( 𝑤 / 𝑁 ) ∈ 𝐴 ) |
| 112 | 61 111 | sylan2b | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 / 𝑁 ) ∈ 𝐴 ) |
| 113 | 6 | simplbi | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ) |
| 114 | 61 | simplbi | ⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 0 ..^ 𝑀 ) ) |
| 115 | 113 114 | anim12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 116 | 63 | ad2antll | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑤 ∈ ℤ ) |
| 117 | 116 | zcnd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑤 ∈ ℂ ) |
| 118 | 35 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑁 ∈ ℂ ) |
| 119 | 37 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑁 ≠ 0 ) |
| 120 | 117 118 119 | divcan1d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑤 / 𝑁 ) · 𝑁 ) = 𝑤 ) |
| 121 | 120 | eqcomd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑤 = ( ( 𝑤 / 𝑁 ) · 𝑁 ) ) |
| 122 | oveq1 | ⊢ ( 𝑥 = ( 𝑤 / 𝑁 ) → ( 𝑥 · 𝑁 ) = ( ( 𝑤 / 𝑁 ) · 𝑁 ) ) | |
| 123 | 122 | eqeq2d | ⊢ ( 𝑥 = ( 𝑤 / 𝑁 ) → ( 𝑤 = ( 𝑥 · 𝑁 ) ↔ 𝑤 = ( ( 𝑤 / 𝑁 ) · 𝑁 ) ) ) |
| 124 | 121 123 | syl5ibrcom | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑥 = ( 𝑤 / 𝑁 ) → 𝑤 = ( 𝑥 · 𝑁 ) ) ) |
| 125 | 16 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑥 ∈ ℤ ) |
| 126 | 125 | zcnd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑥 ∈ ℂ ) |
| 127 | 126 118 119 | divcan4d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑥 · 𝑁 ) / 𝑁 ) = 𝑥 ) |
| 128 | 127 | eqcomd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑥 = ( ( 𝑥 · 𝑁 ) / 𝑁 ) ) |
| 129 | oveq1 | ⊢ ( 𝑤 = ( 𝑥 · 𝑁 ) → ( 𝑤 / 𝑁 ) = ( ( 𝑥 · 𝑁 ) / 𝑁 ) ) | |
| 130 | 129 | eqeq2d | ⊢ ( 𝑤 = ( 𝑥 · 𝑁 ) → ( 𝑥 = ( 𝑤 / 𝑁 ) ↔ 𝑥 = ( ( 𝑥 · 𝑁 ) / 𝑁 ) ) ) |
| 131 | 128 130 | syl5ibrcom | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑤 = ( 𝑥 · 𝑁 ) → 𝑥 = ( 𝑤 / 𝑁 ) ) ) |
| 132 | 124 131 | impbid | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 / 𝑁 ) ) ∧ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑥 = ( 𝑤 / 𝑁 ) ↔ 𝑤 = ( 𝑥 · 𝑁 ) ) ) |
| 133 | 115 132 | sylan2 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑤 / 𝑁 ) ↔ 𝑤 = ( 𝑥 · 𝑁 ) ) ) |
| 134 | 3 58 112 133 | f1o2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |