This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashgcdlem.a | |- A = { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |
|
| hashgcdlem.b | |- B = { z e. ( 0 ..^ M ) | ( z gcd M ) = N } |
||
| hashgcdlem.f | |- F = ( x e. A |-> ( x x. N ) ) |
||
| Assertion | hashgcdlem | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> F : A -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.a | |- A = { y e. ( 0 ..^ ( M / N ) ) | ( y gcd ( M / N ) ) = 1 } |
|
| 2 | hashgcdlem.b | |- B = { z e. ( 0 ..^ M ) | ( z gcd M ) = N } |
|
| 3 | hashgcdlem.f | |- F = ( x e. A |-> ( x x. N ) ) |
|
| 4 | oveq1 | |- ( y = x -> ( y gcd ( M / N ) ) = ( x gcd ( M / N ) ) ) |
|
| 5 | 4 | eqeq1d | |- ( y = x -> ( ( y gcd ( M / N ) ) = 1 <-> ( x gcd ( M / N ) ) = 1 ) ) |
| 6 | 5 1 | elrab2 | |- ( x e. A <-> ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) |
| 7 | elfzonn0 | |- ( x e. ( 0 ..^ ( M / N ) ) -> x e. NN0 ) |
|
| 8 | 7 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> x e. NN0 ) |
| 9 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> N e. NN0 ) |
| 11 | 10 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> N e. NN0 ) |
| 12 | 8 11 | nn0mulcld | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( x x. N ) e. NN0 ) |
| 13 | simpl1 | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> M e. NN ) |
|
| 14 | elfzolt2 | |- ( x e. ( 0 ..^ ( M / N ) ) -> x < ( M / N ) ) |
|
| 15 | 14 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> x < ( M / N ) ) |
| 16 | elfzoelz | |- ( x e. ( 0 ..^ ( M / N ) ) -> x e. ZZ ) |
|
| 17 | 16 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> x e. ZZ ) |
| 18 | 17 | zred | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> x e. RR ) |
| 19 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> M e. RR ) |
| 21 | 20 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> M e. RR ) |
| 22 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 23 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 24 | 22 23 | jca | |- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 25 | 24 | 3ad2ant2 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( N e. RR /\ 0 < N ) ) |
| 26 | 25 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( N e. RR /\ 0 < N ) ) |
| 27 | ltmuldiv | |- ( ( x e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( x x. N ) < M <-> x < ( M / N ) ) ) |
|
| 28 | 18 21 26 27 | syl3anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x x. N ) < M <-> x < ( M / N ) ) ) |
| 29 | 15 28 | mpbird | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( x x. N ) < M ) |
| 30 | elfzo0 | |- ( ( x x. N ) e. ( 0 ..^ M ) <-> ( ( x x. N ) e. NN0 /\ M e. NN /\ ( x x. N ) < M ) ) |
|
| 31 | 12 13 29 30 | syl3anbrc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( x x. N ) e. ( 0 ..^ M ) ) |
| 32 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 33 | 32 | 3ad2ant1 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> M e. CC ) |
| 34 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> N e. CC ) |
| 36 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 37 | 36 | 3ad2ant2 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> N =/= 0 ) |
| 38 | 33 35 37 | divcan1d | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( ( M / N ) x. N ) = M ) |
| 39 | 38 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( M / N ) x. N ) = M ) |
| 40 | 39 | eqcomd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> M = ( ( M / N ) x. N ) ) |
| 41 | 40 | oveq2d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x x. N ) gcd M ) = ( ( x x. N ) gcd ( ( M / N ) x. N ) ) ) |
| 42 | nndivdvds | |- ( ( M e. NN /\ N e. NN ) -> ( N || M <-> ( M / N ) e. NN ) ) |
|
| 43 | 42 | biimp3a | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( M / N ) e. NN ) |
| 44 | 43 | nnzd | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( M / N ) e. ZZ ) |
| 45 | 44 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( M / N ) e. ZZ ) |
| 46 | mulgcdr | |- ( ( x e. ZZ /\ ( M / N ) e. ZZ /\ N e. NN0 ) -> ( ( x x. N ) gcd ( ( M / N ) x. N ) ) = ( ( x gcd ( M / N ) ) x. N ) ) |
|
| 47 | 17 45 11 46 | syl3anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x x. N ) gcd ( ( M / N ) x. N ) ) = ( ( x gcd ( M / N ) ) x. N ) ) |
| 48 | simprr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( x gcd ( M / N ) ) = 1 ) |
|
| 49 | 48 | oveq1d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x gcd ( M / N ) ) x. N ) = ( 1 x. N ) ) |
| 50 | 35 | mullidd | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( 1 x. N ) = N ) |
| 51 | 50 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( 1 x. N ) = N ) |
| 52 | 49 51 | eqtrd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x gcd ( M / N ) ) x. N ) = N ) |
| 53 | 41 47 52 | 3eqtrd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( ( x x. N ) gcd M ) = N ) |
| 54 | oveq1 | |- ( z = ( x x. N ) -> ( z gcd M ) = ( ( x x. N ) gcd M ) ) |
|
| 55 | 54 | eqeq1d | |- ( z = ( x x. N ) -> ( ( z gcd M ) = N <-> ( ( x x. N ) gcd M ) = N ) ) |
| 56 | 55 2 | elrab2 | |- ( ( x x. N ) e. B <-> ( ( x x. N ) e. ( 0 ..^ M ) /\ ( ( x x. N ) gcd M ) = N ) ) |
| 57 | 31 53 56 | sylanbrc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ ( x gcd ( M / N ) ) = 1 ) ) -> ( x x. N ) e. B ) |
| 58 | 6 57 | sylan2b | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ x e. A ) -> ( x x. N ) e. B ) |
| 59 | oveq1 | |- ( z = w -> ( z gcd M ) = ( w gcd M ) ) |
|
| 60 | 59 | eqeq1d | |- ( z = w -> ( ( z gcd M ) = N <-> ( w gcd M ) = N ) ) |
| 61 | 60 2 | elrab2 | |- ( w e. B <-> ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) |
| 62 | simprr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w gcd M ) = N ) |
|
| 63 | elfzoelz | |- ( w e. ( 0 ..^ M ) -> w e. ZZ ) |
|
| 64 | 63 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> w e. ZZ ) |
| 65 | simpl1 | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> M e. NN ) |
|
| 66 | 65 | nnzd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> M e. ZZ ) |
| 67 | gcddvds | |- ( ( w e. ZZ /\ M e. ZZ ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
|
| 68 | 64 66 67 | syl2anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
| 69 | 68 | simpld | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w gcd M ) || w ) |
| 70 | 62 69 | eqbrtrrd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> N || w ) |
| 71 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 72 | 71 | 3ad2ant2 | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> N e. ZZ ) |
| 73 | 72 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> N e. ZZ ) |
| 74 | 37 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> N =/= 0 ) |
| 75 | dvdsval2 | |- ( ( N e. ZZ /\ N =/= 0 /\ w e. ZZ ) -> ( N || w <-> ( w / N ) e. ZZ ) ) |
|
| 76 | 73 74 64 75 | syl3anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( N || w <-> ( w / N ) e. ZZ ) ) |
| 77 | 70 76 | mpbid | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w / N ) e. ZZ ) |
| 78 | elfzofz | |- ( w e. ( 0 ..^ M ) -> w e. ( 0 ... M ) ) |
|
| 79 | 78 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> w e. ( 0 ... M ) ) |
| 80 | elfznn0 | |- ( w e. ( 0 ... M ) -> w e. NN0 ) |
|
| 81 | nn0re | |- ( w e. NN0 -> w e. RR ) |
|
| 82 | nn0ge0 | |- ( w e. NN0 -> 0 <_ w ) |
|
| 83 | 81 82 | jca | |- ( w e. NN0 -> ( w e. RR /\ 0 <_ w ) ) |
| 84 | 79 80 83 | 3syl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w e. RR /\ 0 <_ w ) ) |
| 85 | 25 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( N e. RR /\ 0 < N ) ) |
| 86 | divge0 | |- ( ( ( w e. RR /\ 0 <_ w ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( w / N ) ) |
|
| 87 | 84 85 86 | syl2anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> 0 <_ ( w / N ) ) |
| 88 | elnn0z | |- ( ( w / N ) e. NN0 <-> ( ( w / N ) e. ZZ /\ 0 <_ ( w / N ) ) ) |
|
| 89 | 77 87 88 | sylanbrc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w / N ) e. NN0 ) |
| 90 | 43 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( M / N ) e. NN ) |
| 91 | elfzolt2 | |- ( w e. ( 0 ..^ M ) -> w < M ) |
|
| 92 | 91 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> w < M ) |
| 93 | 64 | zred | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> w e. RR ) |
| 94 | 20 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> M e. RR ) |
| 95 | ltdiv1 | |- ( ( w e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( w < M <-> ( w / N ) < ( M / N ) ) ) |
|
| 96 | 93 94 85 95 | syl3anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w < M <-> ( w / N ) < ( M / N ) ) ) |
| 97 | 92 96 | mpbid | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w / N ) < ( M / N ) ) |
| 98 | elfzo0 | |- ( ( w / N ) e. ( 0 ..^ ( M / N ) ) <-> ( ( w / N ) e. NN0 /\ ( M / N ) e. NN /\ ( w / N ) < ( M / N ) ) ) |
|
| 99 | 89 90 97 98 | syl3anbrc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w / N ) e. ( 0 ..^ ( M / N ) ) ) |
| 100 | 62 | oveq1d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( ( w gcd M ) / N ) = ( N / N ) ) |
| 101 | simpl2 | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> N e. NN ) |
|
| 102 | simpl3 | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> N || M ) |
|
| 103 | gcddiv | |- ( ( ( w e. ZZ /\ M e. ZZ /\ N e. NN ) /\ ( N || w /\ N || M ) ) -> ( ( w gcd M ) / N ) = ( ( w / N ) gcd ( M / N ) ) ) |
|
| 104 | 64 66 101 70 102 103 | syl32anc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( ( w gcd M ) / N ) = ( ( w / N ) gcd ( M / N ) ) ) |
| 105 | 35 37 | dividd | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> ( N / N ) = 1 ) |
| 106 | 105 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( N / N ) = 1 ) |
| 107 | 100 104 106 | 3eqtr3d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( ( w / N ) gcd ( M / N ) ) = 1 ) |
| 108 | oveq1 | |- ( y = ( w / N ) -> ( y gcd ( M / N ) ) = ( ( w / N ) gcd ( M / N ) ) ) |
|
| 109 | 108 | eqeq1d | |- ( y = ( w / N ) -> ( ( y gcd ( M / N ) ) = 1 <-> ( ( w / N ) gcd ( M / N ) ) = 1 ) ) |
| 110 | 109 1 | elrab2 | |- ( ( w / N ) e. A <-> ( ( w / N ) e. ( 0 ..^ ( M / N ) ) /\ ( ( w / N ) gcd ( M / N ) ) = 1 ) ) |
| 111 | 99 107 110 | sylanbrc | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( w e. ( 0 ..^ M ) /\ ( w gcd M ) = N ) ) -> ( w / N ) e. A ) |
| 112 | 61 111 | sylan2b | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ w e. B ) -> ( w / N ) e. A ) |
| 113 | 6 | simplbi | |- ( x e. A -> x e. ( 0 ..^ ( M / N ) ) ) |
| 114 | 61 | simplbi | |- ( w e. B -> w e. ( 0 ..^ M ) ) |
| 115 | 113 114 | anim12i | |- ( ( x e. A /\ w e. B ) -> ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) |
| 116 | 63 | ad2antll | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> w e. ZZ ) |
| 117 | 116 | zcnd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> w e. CC ) |
| 118 | 35 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> N e. CC ) |
| 119 | 37 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> N =/= 0 ) |
| 120 | 117 118 119 | divcan1d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> ( ( w / N ) x. N ) = w ) |
| 121 | 120 | eqcomd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> w = ( ( w / N ) x. N ) ) |
| 122 | oveq1 | |- ( x = ( w / N ) -> ( x x. N ) = ( ( w / N ) x. N ) ) |
|
| 123 | 122 | eqeq2d | |- ( x = ( w / N ) -> ( w = ( x x. N ) <-> w = ( ( w / N ) x. N ) ) ) |
| 124 | 121 123 | syl5ibrcom | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> ( x = ( w / N ) -> w = ( x x. N ) ) ) |
| 125 | 16 | ad2antrl | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> x e. ZZ ) |
| 126 | 125 | zcnd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> x e. CC ) |
| 127 | 126 118 119 | divcan4d | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> ( ( x x. N ) / N ) = x ) |
| 128 | 127 | eqcomd | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> x = ( ( x x. N ) / N ) ) |
| 129 | oveq1 | |- ( w = ( x x. N ) -> ( w / N ) = ( ( x x. N ) / N ) ) |
|
| 130 | 129 | eqeq2d | |- ( w = ( x x. N ) -> ( x = ( w / N ) <-> x = ( ( x x. N ) / N ) ) ) |
| 131 | 128 130 | syl5ibrcom | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> ( w = ( x x. N ) -> x = ( w / N ) ) ) |
| 132 | 124 131 | impbid | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. ( 0 ..^ ( M / N ) ) /\ w e. ( 0 ..^ M ) ) ) -> ( x = ( w / N ) <-> w = ( x x. N ) ) ) |
| 133 | 115 132 | sylan2 | |- ( ( ( M e. NN /\ N e. NN /\ N || M ) /\ ( x e. A /\ w e. B ) ) -> ( x = ( w / N ) <-> w = ( x x. N ) ) ) |
| 134 | 3 58 112 133 | f1o2d | |- ( ( M e. NN /\ N e. NN /\ N || M ) -> F : A -1-1-onto-> B ) |