This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcddiv | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ ( 𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 4 | divides | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐶 ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · 𝐶 ) = 𝐴 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · 𝐶 ) = 𝐴 ) ) |
| 6 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) | |
| 7 | divides | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · 𝐶 ) = 𝐵 ) ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · 𝐶 ) = 𝐵 ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( 𝑎 · 𝐶 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · 𝐶 ) = 𝐵 ) ) ) |
| 10 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( 𝑎 · 𝐶 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · 𝐶 ) = 𝐵 ) ) | |
| 11 | 9 10 | bitr4di | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵 ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) ) ) |
| 12 | gcdcl | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 gcd 𝑏 ) ∈ ℕ0 ) | |
| 13 | 12 | nn0cnd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 gcd 𝑏 ) ∈ ℂ ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝑎 gcd 𝑏 ) ∈ ℂ ) |
| 15 | nncn | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) | |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 17 | nnne0 | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ≠ 0 ) | |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐶 ≠ 0 ) |
| 19 | 14 16 18 | divcan4d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 gcd 𝑏 ) · 𝐶 ) / 𝐶 ) = ( 𝑎 gcd 𝑏 ) ) |
| 20 | nnnn0 | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℕ0 ) | |
| 21 | mulgcdr | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) = ( ( 𝑎 gcd 𝑏 ) · 𝐶 ) ) | |
| 22 | 20 21 | syl3an3 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) = ( ( 𝑎 gcd 𝑏 ) · 𝐶 ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) / 𝐶 ) = ( ( ( 𝑎 gcd 𝑏 ) · 𝐶 ) / 𝐶 ) ) |
| 24 | zcn | ⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝑎 ∈ ℂ ) |
| 26 | 25 16 18 | divcan4d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝑎 · 𝐶 ) / 𝐶 ) = 𝑎 ) |
| 27 | zcn | ⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) | |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝑏 ∈ ℂ ) |
| 29 | 28 16 18 | divcan4d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝑏 · 𝐶 ) / 𝐶 ) = 𝑏 ) |
| 30 | 26 29 | oveq12d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 · 𝐶 ) / 𝐶 ) gcd ( ( 𝑏 · 𝐶 ) / 𝐶 ) ) = ( 𝑎 gcd 𝑏 ) ) |
| 31 | 19 23 30 | 3eqtr4d | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) / 𝐶 ) = ( ( ( 𝑎 · 𝐶 ) / 𝐶 ) gcd ( ( 𝑏 · 𝐶 ) / 𝐶 ) ) ) |
| 32 | oveq12 | ⊢ ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) = ( 𝐴 gcd 𝐵 ) ) | |
| 33 | 32 | oveq1d | ⊢ ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) / 𝐶 ) = ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) ) |
| 34 | oveq1 | ⊢ ( ( 𝑎 · 𝐶 ) = 𝐴 → ( ( 𝑎 · 𝐶 ) / 𝐶 ) = ( 𝐴 / 𝐶 ) ) | |
| 35 | oveq1 | ⊢ ( ( 𝑏 · 𝐶 ) = 𝐵 → ( ( 𝑏 · 𝐶 ) / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | |
| 36 | 34 35 | oveqan12d | ⊢ ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( ( 𝑎 · 𝐶 ) / 𝐶 ) gcd ( ( 𝑏 · 𝐶 ) / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) |
| 37 | 33 36 | eqeq12d | ⊢ ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( ( ( 𝑎 · 𝐶 ) gcd ( 𝑏 · 𝐶 ) ) / 𝐶 ) = ( ( ( 𝑎 · 𝐶 ) / 𝐶 ) gcd ( ( 𝑏 · 𝐶 ) / 𝐶 ) ) ↔ ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 38 | 31 37 | syl5ibcom | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 39 | 38 | 3expa | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 40 | 39 | expcom | ⊢ ( 𝐶 ∈ ℕ → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) ) |
| 41 | 40 | rexlimdvv | ⊢ ( 𝐶 ∈ ℕ → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑎 · 𝐶 ) = 𝐴 ∧ ( 𝑏 · 𝐶 ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 43 | 11 42 | sylbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ ( 𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) gcd ( 𝐵 / 𝐶 ) ) ) |