This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgcdr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcd | ⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) | |
| 2 | 1 | 3coml | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) |
| 3 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 5 | nn0cn | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 7 | 4 6 | mulcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 8 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 10 | 9 6 | mulcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 11 | 7 10 | oveq12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐵 · 𝐶 ) ) = ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) ) |
| 12 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 14 | 13 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 15 | 14 6 | mulcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) · 𝐶 ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) |
| 16 | 2 11 15 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝐶 ) ) |