This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumzsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzsplit.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzsplit.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzsplit.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumzsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| gsumzsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | ||
| Assertion | gsumzsplit | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumzsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumzsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumzsplit.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumzsplit.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumzsplit.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | gsumzsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 11 | gsumzsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | |
| 12 | 2 | fvexi | ⊢ 0 ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 14 | 7 6 13 9 | fsuppmptif | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
| 15 | 7 6 13 9 | fsuppmptif | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
| 16 | 1 | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 17 | acsmre | ⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) | |
| 18 | 5 16 17 | 3syl | ⊢ ( 𝜑 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 19 | 7 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 20 | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 21 | 20 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹 ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 22 | 18 19 21 | syl2anc | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 23 | eqid | ⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) | |
| 24 | 4 20 23 | cntzspan | ⊢ ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 25 | 5 8 24 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 26 | 23 4 | submcmn2 | ⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 27 | 22 26 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 28 | 25 27 | mpbid | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
| 29 | 18 20 19 | mrcssidd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 31 | 7 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 32 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) | |
| 33 | 31 32 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 34 | 30 33 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 35 | 2 | subm0cl | ⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 36 | 22 35 | syl | ⊢ ( 𝜑 → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 38 | 34 37 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 39 | 38 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 40 | 34 37 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 41 | 40 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 42 | 1 2 3 4 5 6 14 15 22 28 39 41 | gsumzadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 43 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 | iftrue | ⊢ ( 𝑘 ∈ 𝐶 → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 45 | 44 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 46 | noel | ⊢ ¬ 𝑘 ∈ ∅ | |
| 47 | eleq2 | ⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑘 ∈ ∅ ) ) | |
| 48 | 46 47 | mtbiri | ⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 49 | 10 48 | syl | ⊢ ( 𝜑 → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 51 | elin | ⊢ ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) | |
| 52 | 50 51 | sylnib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 53 | imnan | ⊢ ( ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ↔ ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) | |
| 54 | 52 53 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ) |
| 55 | 54 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ¬ 𝑘 ∈ 𝐷 ) |
| 56 | 55 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 57 | 45 56 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( ( 𝐹 ‘ 𝑘 ) + 0 ) ) |
| 58 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 59 | 1 3 2 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 60 | 5 58 59 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 62 | 57 61 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 63 | 54 | con2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶 ) ) |
| 64 | 63 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ¬ 𝑘 ∈ 𝐶 ) |
| 65 | 64 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 66 | iftrue | ⊢ ( 𝑘 ∈ 𝐷 → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 67 | 66 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 68 | 65 67 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 0 + ( 𝐹 ‘ 𝑘 ) ) ) |
| 69 | 1 3 2 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 70 | 5 58 69 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 72 | 68 71 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 73 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
| 74 | elun | ⊢ ( 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) | |
| 75 | 73 74 | bitrdi | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) ) |
| 76 | 75 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
| 77 | 62 72 76 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 78 | 77 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 | 43 78 | eqtr4d | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 80 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 81 | 5 80 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
| 83 | 58 82 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
| 84 | 58 82 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
| 85 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) | |
| 86 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) | |
| 87 | 6 83 84 85 86 | offval2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 88 | 79 87 | eqtr4d | ⊢ ( 𝜑 → 𝐹 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 89 | 88 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 90 | 43 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 91 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 92 | 91 11 | sseqtrrid | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 93 | 44 | mpteq2ia | ⊢ ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 94 | resmpt | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) | |
| 95 | resmpt | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 96 | 93 94 95 | 3eqtr4a | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 97 | 92 96 | syl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 98 | 90 97 | eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) |
| 99 | 98 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) ) |
| 100 | 83 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
| 101 | 39 | frnd | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 102 | 4 | cntzidss | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 103 | 28 101 102 | syl2anc | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 104 | eldifn | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑘 ∈ 𝐶 ) | |
| 105 | 104 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → ¬ 𝑘 ∈ 𝐶 ) |
| 106 | 105 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 107 | 106 6 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐶 ) |
| 108 | 1 2 4 5 6 100 103 107 14 | gsumzres | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 109 | 99 108 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 110 | 43 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 111 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 112 | 111 11 | sseqtrrid | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 113 | 66 | mpteq2ia | ⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 114 | resmpt | ⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) | |
| 115 | resmpt | ⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 116 | 113 114 115 | 3eqtr4a | ⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 117 | 112 116 | syl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 118 | 110 117 | eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) |
| 119 | 118 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) ) |
| 120 | 84 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
| 121 | 41 | frnd | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 122 | 4 | cntzidss | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 123 | 28 121 122 | syl2anc | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 124 | eldifn | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) → ¬ 𝑘 ∈ 𝐷 ) | |
| 125 | 124 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → ¬ 𝑘 ∈ 𝐷 ) |
| 126 | 125 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 127 | 126 6 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐷 ) |
| 128 | 1 2 4 5 6 120 123 127 15 | gsumzres | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 129 | 119 128 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 130 | 109 129 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 131 | 42 89 130 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |