This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| submcmn2.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | submcmn2 | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | submcmn2.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | 1 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | 1 4 | ressplusg | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 | 5 | oveqd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 7 | 5 | oveqd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 9 | 3 8 | raleqbidv | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 10 | 3 9 | raleqbidv | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | 11 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 11 4 2 | sscntz | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 14 | 12 12 13 | syl2anc | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 15 | 1 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 18 | 16 17 | iscmn | ⊢ ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 19 | 18 | baib | ⊢ ( 𝐻 ∈ Mnd → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 20 | 15 19 | syl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 21 | 10 14 20 | 3bitr4rd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |