This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzsplit.b | |- B = ( Base ` G ) |
|
| gsumzsplit.0 | |- .0. = ( 0g ` G ) |
||
| gsumzsplit.p | |- .+ = ( +g ` G ) |
||
| gsumzsplit.z | |- Z = ( Cntz ` G ) |
||
| gsumzsplit.g | |- ( ph -> G e. Mnd ) |
||
| gsumzsplit.a | |- ( ph -> A e. V ) |
||
| gsumzsplit.f | |- ( ph -> F : A --> B ) |
||
| gsumzsplit.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzsplit.w | |- ( ph -> F finSupp .0. ) |
||
| gsumzsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| gsumzsplit.u | |- ( ph -> A = ( C u. D ) ) |
||
| Assertion | gsumzsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzsplit.b | |- B = ( Base ` G ) |
|
| 2 | gsumzsplit.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzsplit.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumzsplit.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumzsplit.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumzsplit.a | |- ( ph -> A e. V ) |
|
| 7 | gsumzsplit.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumzsplit.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumzsplit.w | |- ( ph -> F finSupp .0. ) |
|
| 10 | gsumzsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 11 | gsumzsplit.u | |- ( ph -> A = ( C u. D ) ) |
|
| 12 | 2 | fvexi | |- .0. e. _V |
| 13 | 12 | a1i | |- ( ph -> .0. e. _V ) |
| 14 | 7 6 13 9 | fsuppmptif | |- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) finSupp .0. ) |
| 15 | 7 6 13 9 | fsuppmptif | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) finSupp .0. ) |
| 16 | 1 | submacs | |- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
| 17 | acsmre | |- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
|
| 18 | 5 16 17 | 3syl | |- ( ph -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
| 19 | 7 | frnd | |- ( ph -> ran F C_ B ) |
| 20 | eqid | |- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
|
| 21 | 20 | mrccl | |- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ ran F C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
| 22 | 18 19 21 | syl2anc | |- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
| 23 | eqid | |- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
|
| 24 | 4 20 23 | cntzspan | |- ( ( G e. Mnd /\ ran F C_ ( Z ` ran F ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
| 25 | 5 8 24 | syl2anc | |- ( ph -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
| 26 | 23 4 | submcmn2 | |- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
| 27 | 22 26 | syl | |- ( ph -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
| 28 | 25 27 | mpbid | |- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
| 29 | 18 20 19 | mrcssidd | |- ( ph -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ k e. A ) -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 31 | 7 | ffnd | |- ( ph -> F Fn A ) |
| 32 | fnfvelrn | |- ( ( F Fn A /\ k e. A ) -> ( F ` k ) e. ran F ) |
|
| 33 | 31 32 | sylan | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. ran F ) |
| 34 | 30 33 | sseldd | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 35 | 2 | subm0cl | |- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 36 | 22 35 | syl | |- ( ph -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ k e. A ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 38 | 34 37 | ifcld | |- ( ( ph /\ k e. A ) -> if ( k e. C , ( F ` k ) , .0. ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 39 | 38 | fmpttd | |- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 40 | 34 37 | ifcld | |- ( ( ph /\ k e. A ) -> if ( k e. D , ( F ` k ) , .0. ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 41 | 40 | fmpttd | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 42 | 1 2 3 4 5 6 14 15 22 28 39 41 | gsumzadd | |- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) = ( ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) .+ ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
| 43 | 7 | feqmptd | |- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 44 | iftrue | |- ( k e. C -> if ( k e. C , ( F ` k ) , .0. ) = ( F ` k ) ) |
|
| 45 | 44 | adantl | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> if ( k e. C , ( F ` k ) , .0. ) = ( F ` k ) ) |
| 46 | noel | |- -. k e. (/) |
|
| 47 | eleq2 | |- ( ( C i^i D ) = (/) -> ( k e. ( C i^i D ) <-> k e. (/) ) ) |
|
| 48 | 46 47 | mtbiri | |- ( ( C i^i D ) = (/) -> -. k e. ( C i^i D ) ) |
| 49 | 10 48 | syl | |- ( ph -> -. k e. ( C i^i D ) ) |
| 50 | 49 | adantr | |- ( ( ph /\ k e. A ) -> -. k e. ( C i^i D ) ) |
| 51 | elin | |- ( k e. ( C i^i D ) <-> ( k e. C /\ k e. D ) ) |
|
| 52 | 50 51 | sylnib | |- ( ( ph /\ k e. A ) -> -. ( k e. C /\ k e. D ) ) |
| 53 | imnan | |- ( ( k e. C -> -. k e. D ) <-> -. ( k e. C /\ k e. D ) ) |
|
| 54 | 52 53 | sylibr | |- ( ( ph /\ k e. A ) -> ( k e. C -> -. k e. D ) ) |
| 55 | 54 | imp | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> -. k e. D ) |
| 56 | 55 | iffalsed | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> if ( k e. D , ( F ` k ) , .0. ) = .0. ) |
| 57 | 45 56 | oveq12d | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( ( F ` k ) .+ .0. ) ) |
| 58 | 7 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) |
| 59 | 1 3 2 | mndrid | |- ( ( G e. Mnd /\ ( F ` k ) e. B ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
| 60 | 5 58 59 | syl2an2r | |- ( ( ph /\ k e. A ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
| 61 | 60 | adantr | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
| 62 | 57 61 | eqtrd | |- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
| 63 | 54 | con2d | |- ( ( ph /\ k e. A ) -> ( k e. D -> -. k e. C ) ) |
| 64 | 63 | imp | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> -. k e. C ) |
| 65 | 64 | iffalsed | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> if ( k e. C , ( F ` k ) , .0. ) = .0. ) |
| 66 | iftrue | |- ( k e. D -> if ( k e. D , ( F ` k ) , .0. ) = ( F ` k ) ) |
|
| 67 | 66 | adantl | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> if ( k e. D , ( F ` k ) , .0. ) = ( F ` k ) ) |
| 68 | 65 67 | oveq12d | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( .0. .+ ( F ` k ) ) ) |
| 69 | 1 3 2 | mndlid | |- ( ( G e. Mnd /\ ( F ` k ) e. B ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
| 70 | 5 58 69 | syl2an2r | |- ( ( ph /\ k e. A ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
| 71 | 70 | adantr | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
| 72 | 68 71 | eqtrd | |- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
| 73 | 11 | eleq2d | |- ( ph -> ( k e. A <-> k e. ( C u. D ) ) ) |
| 74 | elun | |- ( k e. ( C u. D ) <-> ( k e. C \/ k e. D ) ) |
|
| 75 | 73 74 | bitrdi | |- ( ph -> ( k e. A <-> ( k e. C \/ k e. D ) ) ) |
| 76 | 75 | biimpa | |- ( ( ph /\ k e. A ) -> ( k e. C \/ k e. D ) ) |
| 77 | 62 72 76 | mpjaodan | |- ( ( ph /\ k e. A ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
| 78 | 77 | mpteq2dva | |- ( ph -> ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) = ( k e. A |-> ( F ` k ) ) ) |
| 79 | 43 78 | eqtr4d | |- ( ph -> F = ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 80 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 81 | 5 80 | syl | |- ( ph -> .0. e. B ) |
| 82 | 81 | adantr | |- ( ( ph /\ k e. A ) -> .0. e. B ) |
| 83 | 58 82 | ifcld | |- ( ( ph /\ k e. A ) -> if ( k e. C , ( F ` k ) , .0. ) e. B ) |
| 84 | 58 82 | ifcld | |- ( ( ph /\ k e. A ) -> if ( k e. D , ( F ` k ) , .0. ) e. B ) |
| 85 | eqidd | |- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) = ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) |
|
| 86 | eqidd | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) = ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) |
|
| 87 | 6 83 84 85 86 | offval2 | |- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) = ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 88 | 79 87 | eqtr4d | |- ( ph -> F = ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 89 | 88 | oveq2d | |- ( ph -> ( G gsum F ) = ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
| 90 | 43 | reseq1d | |- ( ph -> ( F |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
| 91 | ssun1 | |- C C_ ( C u. D ) |
|
| 92 | 91 11 | sseqtrrid | |- ( ph -> C C_ A ) |
| 93 | 44 | mpteq2ia | |- ( k e. C |-> if ( k e. C , ( F ` k ) , .0. ) ) = ( k e. C |-> ( F ` k ) ) |
| 94 | resmpt | |- ( C C_ A -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( k e. C |-> if ( k e. C , ( F ` k ) , .0. ) ) ) |
|
| 95 | resmpt | |- ( C C_ A -> ( ( k e. A |-> ( F ` k ) ) |` C ) = ( k e. C |-> ( F ` k ) ) ) |
|
| 96 | 93 94 95 | 3eqtr4a | |- ( C C_ A -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
| 97 | 92 96 | syl | |- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
| 98 | 90 97 | eqtr4d | |- ( ph -> ( F |` C ) = ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) |
| 99 | 98 | oveq2d | |- ( ph -> ( G gsum ( F |` C ) ) = ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) ) |
| 100 | 83 | fmpttd | |- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) : A --> B ) |
| 101 | 39 | frnd | |- ( ph -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 102 | 4 | cntzidss | |- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
| 103 | 28 101 102 | syl2anc | |- ( ph -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
| 104 | eldifn | |- ( k e. ( A \ C ) -> -. k e. C ) |
|
| 105 | 104 | adantl | |- ( ( ph /\ k e. ( A \ C ) ) -> -. k e. C ) |
| 106 | 105 | iffalsed | |- ( ( ph /\ k e. ( A \ C ) ) -> if ( k e. C , ( F ` k ) , .0. ) = .0. ) |
| 107 | 106 6 | suppss2 | |- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) supp .0. ) C_ C ) |
| 108 | 1 2 4 5 6 100 103 107 14 | gsumzres | |- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) = ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
| 109 | 99 108 | eqtrd | |- ( ph -> ( G gsum ( F |` C ) ) = ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
| 110 | 43 | reseq1d | |- ( ph -> ( F |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
| 111 | ssun2 | |- D C_ ( C u. D ) |
|
| 112 | 111 11 | sseqtrrid | |- ( ph -> D C_ A ) |
| 113 | 66 | mpteq2ia | |- ( k e. D |-> if ( k e. D , ( F ` k ) , .0. ) ) = ( k e. D |-> ( F ` k ) ) |
| 114 | resmpt | |- ( D C_ A -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( k e. D |-> if ( k e. D , ( F ` k ) , .0. ) ) ) |
|
| 115 | resmpt | |- ( D C_ A -> ( ( k e. A |-> ( F ` k ) ) |` D ) = ( k e. D |-> ( F ` k ) ) ) |
|
| 116 | 113 114 115 | 3eqtr4a | |- ( D C_ A -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
| 117 | 112 116 | syl | |- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
| 118 | 110 117 | eqtr4d | |- ( ph -> ( F |` D ) = ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) |
| 119 | 118 | oveq2d | |- ( ph -> ( G gsum ( F |` D ) ) = ( G gsum ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) ) |
| 120 | 84 | fmpttd | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) : A --> B ) |
| 121 | 41 | frnd | |- ( ph -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 122 | 4 | cntzidss | |- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 123 | 28 121 122 | syl2anc | |- ( ph -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 124 | eldifn | |- ( k e. ( A \ D ) -> -. k e. D ) |
|
| 125 | 124 | adantl | |- ( ( ph /\ k e. ( A \ D ) ) -> -. k e. D ) |
| 126 | 125 | iffalsed | |- ( ( ph /\ k e. ( A \ D ) ) -> if ( k e. D , ( F ` k ) , .0. ) = .0. ) |
| 127 | 126 6 | suppss2 | |- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) supp .0. ) C_ D ) |
| 128 | 1 2 4 5 6 120 123 127 15 | gsumzres | |- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) = ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 129 | 119 128 | eqtrd | |- ( ph -> ( G gsum ( F |` D ) ) = ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
| 130 | 109 129 | oveq12d | |- ( ph -> ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) = ( ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) .+ ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
| 131 | 42 89 130 | 3eqtr4d | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |