This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzspan.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| cntzspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | ||
| cntzspan.h | ⊢ 𝐻 = ( 𝐺 ↾s ( 𝐾 ‘ 𝑆 ) ) | ||
| Assertion | cntzspan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝐻 ∈ CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzspan.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | cntzspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 3 | cntzspan.h | ⊢ 𝐻 = ( 𝐺 ↾s ( 𝐾 ‘ 𝑆 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 | 6 | acsmred | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) | |
| 9 | 4 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 10 | 8 9 | sstrdi | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 4 1 | cntzsubm | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 13 | 2 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ) |
| 14 | 7 8 12 13 | syl3anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ) |
| 15 | 7 2 | mrcssvd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 4 1 | cntzrec | ⊢ ( ( ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
| 17 | 15 10 16 | syl2anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
| 18 | 14 17 | mpbid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
| 19 | 4 1 | cntzsubm | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 20 | 15 19 | syldan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 21 | 2 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∧ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
| 22 | 7 18 20 21 | syl3anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
| 23 | 2 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 24 | 7 10 23 | syl2anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 25 | 3 1 | submcmn2 | ⊢ ( ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
| 26 | 24 25 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐻 ∈ CMnd ↔ ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
| 27 | 22 26 | mpbird | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝐻 ∈ CMnd ) |