This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| Assertion | oppgmnd | ⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ Mnd → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 5 | eqidd | ⊢ ( 𝑅 ∈ Mnd → ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 8 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) |
| 9 | 2 6 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 10 | 9 | 3com23 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 8 10 | eqeltrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | simpl | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Mnd ) | |
| 13 | simpr3 | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) | |
| 14 | simpr2 | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 15 | simpr1 | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 16 | 2 6 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 17 | 12 13 14 15 16 | syl13anc | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 19 | 8 | oveq1i | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 ) |
| 20 | 6 1 7 | oppgplus | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 21 | 19 20 | eqtri | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 22 | 6 1 7 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) |
| 23 | 22 | oveq2i | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 24 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) |
| 25 | 23 24 | eqtri | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) |
| 26 | 18 21 25 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) ) |
| 27 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 28 | 2 27 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 6 1 7 | oppgplus | ⊢ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) |
| 30 | 2 6 27 | mndrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 31 | 29 30 | eqtrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 ) = 𝑥 ) |
| 32 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 ) |
| 33 | 2 6 27 | mndlid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 35 | 4 5 11 26 28 31 34 | ismndd | ⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |