This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| oppgcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | oppgcntz | ⊢ ( 𝑍 ‘ 𝐴 ) = ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | oppgcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | eqcom | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 6 | 4 1 5 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
| 7 | 4 1 5 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) |
| 8 | 6 7 | eqeq12i | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 9 | 3 8 | bitr4i | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 14 | 13 2 | cntzrcl | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → ( 𝐺 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 13 4 2 | elcntz | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 17 | 15 16 | biadanii | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 18 | 1 13 | oppgbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 19 | eqid | ⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) | |
| 20 | 18 19 | cntzrcl | ⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → ( 𝑂 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 21 | 20 | simprd | ⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 22 | 18 5 19 | elcntz | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 23 | 21 22 | biadanii | ⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 24 | 12 17 23 | 3bitr4i | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ) |
| 25 | 24 | eqriv | ⊢ ( 𝑍 ‘ 𝐴 ) = ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) |