This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| Assertion | oppgsubm | ⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | submrcl | ⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 3 | submrcl | ⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝑂 ∈ Mnd ) | |
| 4 | 1 | oppgmndb | ⊢ ( 𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd ) |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) → 𝐺 ∈ Mnd ) |
| 6 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 9 | 7 1 8 | oppgplus | ⊢ ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) |
| 10 | 9 | eleq1i | ⊢ ( ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) |
| 11 | 10 | 2ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) |
| 12 | 6 11 | bitr4i | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) |
| 13 | 12 | 3anbi3i | ⊢ ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) |
| 14 | 13 | a1i | ⊢ ( 𝐺 ∈ Mnd → ( ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 15 16 7 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ) ) ) |
| 18 | 1 15 | oppgbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 19 | 1 16 | oppgid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑂 ) |
| 20 | 18 19 8 | issubm | ⊢ ( 𝑂 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 21 | 4 20 | sylbi | ⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( +g ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 22 | 14 17 21 | 3bitr4d | ⊢ ( 𝐺 ∈ Mnd → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) ) |
| 23 | 2 5 22 | pm5.21nii | ⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) |
| 24 | 23 | eqriv | ⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |