This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq4.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqfeq4.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqfeq4.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| seqfeq4.id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 𝑄 𝑦 ) ) | ||
| Assertion | seqfeq4 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( 𝑄 , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq4.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqfeq4.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 3 | seqfeq4.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 4 | seqfeq4.id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 𝑄 𝑦 ) ) | |
| 5 | fvex | ⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 6 | fvi | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V → ( I ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( I ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) |
| 8 | ovex | ⊢ ( 𝑥 + 𝑦 ) ∈ V | |
| 9 | fvi | ⊢ ( ( 𝑥 + 𝑦 ) ∈ V → ( I ‘ ( 𝑥 + 𝑦 ) ) = ( 𝑥 + 𝑦 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( I ‘ ( 𝑥 + 𝑦 ) ) = ( 𝑥 + 𝑦 ) |
| 11 | fvi | ⊢ ( 𝑥 ∈ V → ( I ‘ 𝑥 ) = 𝑥 ) | |
| 12 | 11 | elv | ⊢ ( I ‘ 𝑥 ) = 𝑥 |
| 13 | fvi | ⊢ ( 𝑦 ∈ V → ( I ‘ 𝑦 ) = 𝑦 ) | |
| 14 | 13 | elv | ⊢ ( I ‘ 𝑦 ) = 𝑦 |
| 15 | 12 14 | oveq12i | ⊢ ( ( I ‘ 𝑥 ) 𝑄 ( I ‘ 𝑦 ) ) = ( 𝑥 𝑄 𝑦 ) |
| 16 | 4 10 15 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( I ‘ ( 𝑥 + 𝑦 ) ) = ( ( I ‘ 𝑥 ) 𝑄 ( I ‘ 𝑦 ) ) ) |
| 17 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 18 | fvi | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ V → ( I ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | 17 18 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( I ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 20 | 3 2 1 16 19 | seqhomo | ⊢ ( 𝜑 → ( I ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐹 ) ‘ 𝑁 ) ) |
| 21 | 7 20 | eqtr3id | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( 𝑄 , 𝐹 ) ‘ 𝑁 ) ) |