This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzinv.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzinv.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| gsumzinv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| gsumzinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzinv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzinv.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzinv.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzinv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzinv.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzinv.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | gsumzinv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | gsumzinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumzinv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumzinv.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumzinv.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 11 | 5 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 | 1 4 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 14 | fco | ⊢ ( ( 𝐼 : 𝐵 ⟶ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐼 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) | |
| 15 | 13 7 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 16 | 10 4 | invoppggim | ⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) ) |
| 17 | gimghm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) ) | |
| 18 | ghmmhm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) | |
| 19 | 5 16 17 18 | 4syl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
| 20 | eqid | ⊢ ( Cntz ‘ ( oppg ‘ 𝐺 ) ) = ( Cntz ‘ ( oppg ‘ 𝐺 ) ) | |
| 21 | 3 20 | cntzmhm2 | ⊢ ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) ) |
| 22 | 19 8 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) ) |
| 23 | rnco2 | ⊢ ran ( 𝐼 ∘ 𝐹 ) = ( 𝐼 “ ran 𝐹 ) | |
| 24 | 23 | fveq2i | ⊢ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) = ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 25 | 10 3 | oppgcntz | ⊢ ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) ) = ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 26 | 24 25 | eqtri | ⊢ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) = ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 27 | 22 23 26 | 3sstr4g | ⊢ ( 𝜑 → ran ( 𝐼 ∘ 𝐹 ) ⊆ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) ) |
| 28 | 2 | fvexi | ⊢ 0 ∈ V |
| 29 | 28 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 30 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 31 | 30 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 32 | 2 4 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ 0 ) = 0 ) |
| 33 | 5 32 | syl | ⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = 0 ) |
| 34 | 29 7 13 6 31 9 33 | fsuppco2 | ⊢ ( 𝜑 → ( 𝐼 ∘ 𝐹 ) finSupp 0 ) |
| 35 | 1 2 3 10 11 6 15 27 34 | gsumzoppg | ⊢ ( 𝜑 → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) ) |
| 36 | 10 | oppgmnd | ⊢ ( 𝐺 ∈ Mnd → ( oppg ‘ 𝐺 ) ∈ Mnd ) |
| 37 | 11 36 | syl | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ Mnd ) |
| 38 | 1 3 11 37 6 19 7 8 2 9 | gsumzmhm | ⊢ ( 𝜑 → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 39 | 35 38 | eqtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |