This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzmhm.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzmhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | ||
| gsumzmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzmhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | ||
| gsumzmhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzmhm.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzmhm.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzmhm.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzmhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | gsumzmhm.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 4 | gsumzmhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | |
| 5 | gsumzmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumzmhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 7 | gsumzmhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumzmhm.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumzmhm.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 10 | gsumzmhm.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 12 | 11 | gsumz | ⊢ ( ( 𝐻 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 | 9 11 | mhm0 | ⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 18 | 14 17 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 𝐾 ‘ 0 ) ) |
| 19 | 1 9 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
| 22 | 9 | fvexi | ⊢ 0 ∈ V |
| 23 | 22 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 24 | 7 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 25 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 26 | 24 23 25 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 27 | ssid | ⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) | |
| 28 | 26 27 | eqsstrdi | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 29 | 7 5 23 28 | gsumcllem | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 31 | 1 30 | mhmf | ⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 32 | 6 31 | syl | ⊢ ( 𝜑 → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 33 | 32 | feqmptd | ⊢ ( 𝜑 → 𝐾 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑥 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐾 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑥 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 0 ) ) | |
| 36 | 21 29 34 35 | fmptco | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) ) |
| 37 | 16 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 39 | 36 38 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) ) |
| 41 | 29 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 42 | 9 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 43 | 3 5 42 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = 0 ) |
| 46 | 45 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾 ‘ 0 ) ) |
| 47 | 18 40 46 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 48 | 47 | ex | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 49 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐺 ∈ Mnd ) |
| 50 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 51 | 1 50 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 52 | 51 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 53 | 49 52 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 54 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 55 | 54 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 56 | cnvimass | ⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 | |
| 57 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 58 | 56 57 | fssdm | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
| 59 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) | |
| 60 | 55 58 59 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
| 61 | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) | |
| 62 | 60 61 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
| 63 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ) | |
| 64 | 7 62 63 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ) |
| 65 | 64 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 66 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) | |
| 67 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 68 | 66 67 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 69 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 70 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 71 | 1 50 70 | mhmlin | ⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 72 | 71 | 3expb | ⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 73 | 69 72 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 74 | coass | ⊢ ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) = ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) | |
| 75 | 74 | fveq1i | ⊢ ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) |
| 76 | fvco3 | ⊢ ( ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) ) | |
| 77 | 64 76 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 78 | 75 77 | eqtr2id | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) = ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) ) |
| 79 | 53 65 68 73 78 | seqhomo | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 80 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐴 ∈ 𝑉 ) |
| 81 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 82 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 83 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 84 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 85 | 83 84 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 86 | 85 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 87 | 82 86 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 88 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 89 | 1 9 50 2 49 80 57 81 66 60 87 88 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 90 | 89 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) |
| 91 | eqid | ⊢ ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 ) | |
| 92 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐻 ∈ Mnd ) |
| 93 | fco | ⊢ ( ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐾 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) | |
| 94 | 32 57 93 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 95 | 2 91 | cntzmhm2 | ⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) ) |
| 96 | 6 81 95 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) ) |
| 97 | rnco2 | ⊢ ran ( 𝐾 ∘ 𝐹 ) = ( 𝐾 “ ran 𝐹 ) | |
| 98 | 97 | fveq2i | ⊢ ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾 ∘ 𝐹 ) ) = ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) |
| 99 | 96 97 98 | 3sstr4g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran ( 𝐾 ∘ 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾 ∘ 𝐹 ) ) ) |
| 100 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 101 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 102 | 57 100 101 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 103 | 22 | a1i | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 0 ∈ V ) |
| 104 | 57 82 80 103 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 105 | 104 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐾 ‘ 0 ) ) |
| 106 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 107 | 102 105 106 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) ) |
| 108 | 94 107 | suppss | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) supp ( 0g ‘ 𝐻 ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 109 | 108 86 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) supp ( 0g ‘ 𝐻 ) ) ⊆ ran 𝑓 ) |
| 110 | eqid | ⊢ ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐻 ) ) = ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐻 ) ) | |
| 111 | 30 11 70 91 92 80 94 99 66 60 109 110 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 112 | 79 90 111 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 113 | 112 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 114 | 113 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 115 | 114 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 116 | 10 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 117 | 26 116 | eqeltrrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin ) |
| 118 | fz1f1o | ⊢ ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) | |
| 119 | 117 118 | syl | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 120 | 48 115 119 | mpjaod | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |