This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzmhm.b | |- B = ( Base ` G ) |
|
| gsumzmhm.z | |- Z = ( Cntz ` G ) |
||
| gsumzmhm.g | |- ( ph -> G e. Mnd ) |
||
| gsumzmhm.h | |- ( ph -> H e. Mnd ) |
||
| gsumzmhm.a | |- ( ph -> A e. V ) |
||
| gsumzmhm.k | |- ( ph -> K e. ( G MndHom H ) ) |
||
| gsumzmhm.f | |- ( ph -> F : A --> B ) |
||
| gsumzmhm.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzmhm.0 | |- .0. = ( 0g ` G ) |
||
| gsumzmhm.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumzmhm | |- ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzmhm.b | |- B = ( Base ` G ) |
|
| 2 | gsumzmhm.z | |- Z = ( Cntz ` G ) |
|
| 3 | gsumzmhm.g | |- ( ph -> G e. Mnd ) |
|
| 4 | gsumzmhm.h | |- ( ph -> H e. Mnd ) |
|
| 5 | gsumzmhm.a | |- ( ph -> A e. V ) |
|
| 6 | gsumzmhm.k | |- ( ph -> K e. ( G MndHom H ) ) |
|
| 7 | gsumzmhm.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumzmhm.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumzmhm.0 | |- .0. = ( 0g ` G ) |
|
| 10 | gsumzmhm.w | |- ( ph -> F finSupp .0. ) |
|
| 11 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 12 | 11 | gsumz | |- ( ( H e. Mnd /\ A e. V ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) |
| 13 | 4 5 12 | syl2anc | |- ( ph -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) |
| 15 | 9 11 | mhm0 | |- ( K e. ( G MndHom H ) -> ( K ` .0. ) = ( 0g ` H ) ) |
| 16 | 6 15 | syl | |- ( ph -> ( K ` .0. ) = ( 0g ` H ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K ` .0. ) = ( 0g ` H ) ) |
| 18 | 14 17 | eqtr4d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( K ` .0. ) ) |
| 19 | 1 9 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 20 | 3 19 | syl | |- ( ph -> .0. e. B ) |
| 21 | 20 | ad2antrr | |- ( ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) /\ k e. A ) -> .0. e. B ) |
| 22 | 9 | fvexi | |- .0. e. _V |
| 23 | 22 | a1i | |- ( ph -> .0. e. _V ) |
| 24 | 7 5 | fexd | |- ( ph -> F e. _V ) |
| 25 | suppimacnv | |- ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
|
| 26 | 24 23 25 | syl2anc | |- ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
| 27 | ssid | |- ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) |
|
| 28 | 26 27 | eqsstrdi | |- ( ph -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 29 | 7 5 23 28 | gsumcllem | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 30 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 31 | 1 30 | mhmf | |- ( K e. ( G MndHom H ) -> K : B --> ( Base ` H ) ) |
| 32 | 6 31 | syl | |- ( ph -> K : B --> ( Base ` H ) ) |
| 33 | 32 | feqmptd | |- ( ph -> K = ( x e. B |-> ( K ` x ) ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> K = ( x e. B |-> ( K ` x ) ) ) |
| 35 | fveq2 | |- ( x = .0. -> ( K ` x ) = ( K ` .0. ) ) |
|
| 36 | 21 29 34 35 | fmptco | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K o. F ) = ( k e. A |-> ( K ` .0. ) ) ) |
| 37 | 16 | mpteq2dv | |- ( ph -> ( k e. A |-> ( K ` .0. ) ) = ( k e. A |-> ( 0g ` H ) ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( k e. A |-> ( K ` .0. ) ) = ( k e. A |-> ( 0g ` H ) ) ) |
| 39 | 36 38 | eqtrd | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K o. F ) = ( k e. A |-> ( 0g ` H ) ) ) |
| 40 | 39 | oveq2d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( K o. F ) ) = ( H gsum ( k e. A |-> ( 0g ` H ) ) ) ) |
| 41 | 29 | oveq2d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 42 | 9 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 43 | 3 5 42 | syl2anc | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 45 | 41 44 | eqtrd | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = .0. ) |
| 46 | 45 | fveq2d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K ` ( G gsum F ) ) = ( K ` .0. ) ) |
| 47 | 18 40 46 | 3eqtr4d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |
| 48 | 47 | ex | |- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) |
| 49 | 3 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> G e. Mnd ) |
| 50 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 51 | 1 50 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 52 | 51 | 3expb | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) e. B ) |
| 53 | 49 52 | sylan | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) e. B ) |
| 54 | f1of1 | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
|
| 55 | 54 | ad2antll | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
| 56 | cnvimass | |- ( `' F " ( _V \ { .0. } ) ) C_ dom F |
|
| 57 | 7 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> B ) |
| 58 | 56 57 | fssdm | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
| 59 | f1ss | |- ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) /\ ( `' F " ( _V \ { .0. } ) ) C_ A ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
|
| 60 | 55 58 59 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
| 61 | f1f | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
|
| 62 | 60 61 | syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
| 63 | fco | |- ( ( F : A --> B /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B ) |
|
| 64 | 7 62 63 | syl2an2r | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B ) |
| 65 | 64 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( F o. f ) ` x ) e. B ) |
| 66 | simprl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) |
|
| 67 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 68 | 66 67 | eleqtrdi | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. ( ZZ>= ` 1 ) ) |
| 69 | 6 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> K e. ( G MndHom H ) ) |
| 70 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 71 | 1 50 70 | mhmlin | |- ( ( K e. ( G MndHom H ) /\ x e. B /\ y e. B ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) |
| 72 | 71 | 3expb | |- ( ( K e. ( G MndHom H ) /\ ( x e. B /\ y e. B ) ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) |
| 73 | 69 72 | sylan | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) |
| 74 | coass | |- ( ( K o. F ) o. f ) = ( K o. ( F o. f ) ) |
|
| 75 | 74 | fveq1i | |- ( ( ( K o. F ) o. f ) ` x ) = ( ( K o. ( F o. f ) ) ` x ) |
| 76 | fvco3 | |- ( ( ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( K o. ( F o. f ) ) ` x ) = ( K ` ( ( F o. f ) ` x ) ) ) |
|
| 77 | 64 76 | sylan | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( K o. ( F o. f ) ) ` x ) = ( K ` ( ( F o. f ) ` x ) ) ) |
| 78 | 75 77 | eqtr2id | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( K ` ( ( F o. f ) ` x ) ) = ( ( ( K o. F ) o. f ) ` x ) ) |
| 79 | 53 65 68 73 78 | seqhomo | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( ( K o. F ) o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 80 | 5 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> A e. V ) |
| 81 | 8 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 82 | 28 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 83 | f1ofo | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) ) |
|
| 84 | forn | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
|
| 85 | 83 84 | syl | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
| 86 | 85 | ad2antll | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
| 87 | 82 86 | sseqtrrd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 88 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 89 | 1 9 50 2 49 80 57 81 66 60 87 88 | gsumval3 | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 90 | 89 | fveq2d | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( G gsum F ) ) = ( K ` ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) |
| 91 | eqid | |- ( Cntz ` H ) = ( Cntz ` H ) |
|
| 92 | 4 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> H e. Mnd ) |
| 93 | fco | |- ( ( K : B --> ( Base ` H ) /\ F : A --> B ) -> ( K o. F ) : A --> ( Base ` H ) ) |
|
| 94 | 32 57 93 | syl2an2r | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K o. F ) : A --> ( Base ` H ) ) |
| 95 | 2 91 | cntzmhm2 | |- ( ( K e. ( G MndHom H ) /\ ran F C_ ( Z ` ran F ) ) -> ( K " ran F ) C_ ( ( Cntz ` H ) ` ( K " ran F ) ) ) |
| 96 | 6 81 95 | syl2an2r | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K " ran F ) C_ ( ( Cntz ` H ) ` ( K " ran F ) ) ) |
| 97 | rnco2 | |- ran ( K o. F ) = ( K " ran F ) |
|
| 98 | 97 | fveq2i | |- ( ( Cntz ` H ) ` ran ( K o. F ) ) = ( ( Cntz ` H ) ` ( K " ran F ) ) |
| 99 | 96 97 98 | 3sstr4g | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran ( K o. F ) C_ ( ( Cntz ` H ) ` ran ( K o. F ) ) ) |
| 100 | eldifi | |- ( x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) -> x e. A ) |
|
| 101 | fvco3 | |- ( ( F : A --> B /\ x e. A ) -> ( ( K o. F ) ` x ) = ( K ` ( F ` x ) ) ) |
|
| 102 | 57 100 101 | syl2an | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) ` x ) = ( K ` ( F ` x ) ) ) |
| 103 | 22 | a1i | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> .0. e. _V ) |
| 104 | 57 82 80 103 | suppssr | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F ` x ) = .0. ) |
| 105 | 104 | fveq2d | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( F ` x ) ) = ( K ` .0. ) ) |
| 106 | 16 | ad2antrr | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` .0. ) = ( 0g ` H ) ) |
| 107 | 102 105 106 | 3eqtrd | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) ` x ) = ( 0g ` H ) ) |
| 108 | 94 107 | suppss | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) supp ( 0g ` H ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 109 | 108 86 | sseqtrrd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) supp ( 0g ` H ) ) C_ ran f ) |
| 110 | eqid | |- ( ( ( K o. F ) o. f ) supp ( 0g ` H ) ) = ( ( ( K o. F ) o. f ) supp ( 0g ` H ) ) |
|
| 111 | 30 11 70 91 92 80 94 99 66 60 109 110 | gsumval3 | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( H gsum ( K o. F ) ) = ( seq 1 ( ( +g ` H ) , ( ( K o. F ) o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 112 | 79 90 111 | 3eqtr4rd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |
| 113 | 112 | expr | |- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) |
| 114 | 113 | exlimdv | |- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) |
| 115 | 114 | expimpd | |- ( ph -> ( ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) |
| 116 | 10 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 117 | 26 116 | eqeltrrd | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) e. Fin ) |
| 118 | fz1f1o | |- ( ( `' F " ( _V \ { .0. } ) ) e. Fin -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
|
| 119 | 117 118 | syl | |- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 120 | 48 115 119 | mpjaod | |- ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |