This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqhomo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqhomo.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqhomo.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqhomo.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) | ||
| seqhomo.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | seqhomo | ⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqhomo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqhomo.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 3 | seqhomo.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | seqhomo.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) | |
| 5 | seqhomo.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 6 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 9 | 2fveq3 | ⊢ ( 𝑥 = 𝑀 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 15 | 2fveq3 | ⊢ ( 𝑥 = 𝑛 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) |
| 18 | 14 17 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 21 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) | |
| 22 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 24 | 20 23 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 26 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 27 | 2fveq3 | ⊢ ( 𝑥 = 𝑁 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) |
| 30 | 26 29 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
| 32 | 2fveq3 | ⊢ ( 𝑥 = 𝑀 → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) ) | |
| 33 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐺 ‘ 𝑀 ) ) ) |
| 35 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 36 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 37 | 3 36 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 38 | 34 35 37 | rspcdva | ⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐺 ‘ 𝑀 ) ) |
| 39 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 40 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 41 | 3 39 40 | 3syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 42 | 41 | fveq2d | ⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 43 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 44 | 3 39 43 | 3syl | ⊢ ( 𝜑 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 45 | 38 42 44 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) |
| 46 | 45 | a1d | ⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) |
| 47 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 49 | 48 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 50 | 49 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 51 | oveq1 | ⊢ ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 52 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 53 | 52 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 | 53 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 55 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 57 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 58 | elfzuz3 | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 59 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 60 | 48 58 59 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 61 | 60 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 62 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 63 | 61 62 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 64 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 65 | 57 63 64 | seqcl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 66 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 68 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 70 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 71 | 67 69 70 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 72 | fvoveq1 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) ) | |
| 73 | fveq2 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) | |
| 74 | 73 | oveq1d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 75 | 72 74 | eqeq12d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 76 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 77 | 76 | fveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 78 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 79 | 78 | oveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 80 | 77 79 | eqeq12d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 81 | 75 80 | rspc2v | ⊢ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 82 | 65 71 81 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 83 | 56 82 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 84 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 85 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 86 | 84 85 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 87 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 88 | 86 87 70 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 89 | 88 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 90 | 54 83 89 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 91 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 92 | 91 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 93 | 90 92 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 94 | 51 93 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 95 | 50 94 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 96 | 13 19 25 31 46 95 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 97 | 3 96 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) |
| 98 | 7 97 | mpd | ⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) |