This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| cntzmhm.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | ||
| Assertion | cntzmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | cntzmhm.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | |
| 3 | 1 2 | cntzmhm | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
| 5 | ssralv | ⊢ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) | |
| 6 | 4 5 | mpan9 | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 9 | 7 8 | mhmf | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 11 | 10 | ffund | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → Fun 𝐹 ) |
| 12 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) | |
| 13 | 7 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑇 ) ⊆ ( Base ‘ 𝐺 ) |
| 14 | 12 13 | sstrdi | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 10 | fdmd | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → dom 𝐹 = ( Base ‘ 𝐺 ) ) |
| 16 | 14 15 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ dom 𝐹 ) |
| 17 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) | |
| 18 | 11 16 17 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) |
| 19 | 6 18 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |