This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat . (Contributed by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumwcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsgrpccat.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | gsumsgrpccat | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsgrpccat.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | simp1 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝐺 ∈ Smgrp ) | |
| 4 | sgrpmgm | ⊢ ( 𝐺 ∈ Smgrp → 𝐺 ∈ Mgm ) | |
| 5 | 1 2 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 8 | 3 7 | sylan | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 9 | 1 2 | sgrpass | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 10 | 3 9 | sylan | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 11 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 14 | 13 | nnzd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 15 | 14 | uzidd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 16 | lennncl | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝑋 ≠ ∅ ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) | |
| 17 | 16 | ad2ant2l | ⊢ ( ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 19 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ → ( ( ♯ ‘ 𝑋 ) − 1 ) ∈ ℕ0 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑋 ) − 1 ) ∈ ℕ0 ) |
| 21 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑊 ) ) ∧ ( ( ♯ ‘ 𝑋 ) − 1 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 𝑋 ) − 1 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑊 ) ) ) | |
| 22 | 15 20 21 | syl2anc | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 𝑋 ) − 1 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 23 | 13 | nncnd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 24 | 18 | nncnd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑋 ) ∈ ℂ ) |
| 25 | 1cnd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 1 ∈ ℂ ) | |
| 26 | 23 24 25 | addsubassd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) | |
| 29 | 23 27 28 | sylancl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) = ( ℤ≥ ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 31 | 22 26 30 | 3eltr4d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) ) |
| 32 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) | |
| 33 | 13 32 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
| 34 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 35 | 33 34 | eleqtrdi | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 36 | ccatcl | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝑊 ++ 𝑋 ) ∈ Word 𝐵 ) | |
| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑊 ++ 𝑋 ) ∈ Word 𝐵 ) |
| 38 | wrdf | ⊢ ( ( 𝑊 ++ 𝑋 ) ∈ Word 𝐵 → ( 𝑊 ++ 𝑋 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) ) ⟶ 𝐵 ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑊 ++ 𝑋 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) ) ⟶ 𝐵 ) |
| 40 | ccatlen | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) | |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) ) |
| 43 | 18 | nnzd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 44 | 14 43 | zaddcld | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 45 | fzoval | ⊢ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) |
| 47 | 42 46 | eqtrd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) ) = ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) |
| 48 | 47 | feq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑊 ++ 𝑋 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 𝑋 ) ) ) ⟶ 𝐵 ↔ ( 𝑊 ++ 𝑋 ) : ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ⟶ 𝐵 ) ) |
| 49 | 39 48 | mpbid | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑊 ++ 𝑋 ) : ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ⟶ 𝐵 ) |
| 50 | 49 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) → ( ( 𝑊 ++ 𝑋 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 51 | 8 10 31 35 50 | seqsplit | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) = ( ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) + ( seq ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) ) |
| 52 | simpl2l | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑊 ∈ Word 𝐵 ) | |
| 53 | simpl2r | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑋 ∈ Word 𝐵 ) | |
| 54 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 55 | 14 54 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 56 | 55 | eleq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
| 57 | 56 | biimpar | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 58 | ccatval1 | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ 𝑋 ) ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) | |
| 59 | 52 53 57 58 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 ++ 𝑋 ) ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
| 60 | 35 59 | seqfveq | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( seq 0 ( + , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 61 | 23 | addlidd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 + ( ♯ ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 62 | 29 61 | eqtr4d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) = ( 0 + ( ♯ ‘ 𝑊 ) ) ) |
| 63 | 62 | seqeq1d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → seq ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ( + , ( 𝑊 ++ 𝑋 ) ) = seq ( 0 + ( ♯ ‘ 𝑊 ) ) ( + , ( 𝑊 ++ 𝑋 ) ) ) |
| 64 | 23 24 | addcomd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) = ( ( ♯ ‘ 𝑋 ) + ( ♯ ‘ 𝑊 ) ) ) |
| 65 | 64 | oveq1d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑋 ) + ( ♯ ‘ 𝑊 ) ) − 1 ) ) |
| 66 | 24 23 25 | addsubd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑋 ) + ( ♯ ‘ 𝑊 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑋 ) − 1 ) + ( ♯ ‘ 𝑊 ) ) ) |
| 67 | 65 66 | eqtrd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑋 ) − 1 ) + ( ♯ ‘ 𝑊 ) ) ) |
| 68 | 63 67 | fveq12d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) = ( seq ( 0 + ( ♯ ‘ 𝑊 ) ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑋 ) − 1 ) + ( ♯ ‘ 𝑊 ) ) ) ) |
| 69 | 20 34 | eleqtrdi | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑋 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 70 | simpl2l | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) → 𝑊 ∈ Word 𝐵 ) | |
| 71 | simpl2r | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) → 𝑋 ∈ Word 𝐵 ) | |
| 72 | fzoval | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑋 ) ) = ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) | |
| 73 | 43 72 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 0 ..^ ( ♯ ‘ 𝑋 ) ) = ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
| 74 | 73 | eleq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ↔ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
| 75 | 74 | biimpar | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) |
| 76 | ccatval3 | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑊 ++ 𝑋 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑊 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) | |
| 77 | 70 71 75 76 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) → ( ( 𝑊 ++ 𝑋 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑊 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) |
| 78 | 77 | eqcomd | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) → ( 𝑋 ‘ 𝑥 ) = ( ( 𝑊 ++ 𝑋 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑊 ) ) ) ) |
| 79 | 69 14 78 | seqshft2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) = ( seq ( 0 + ( ♯ ‘ 𝑊 ) ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑋 ) − 1 ) + ( ♯ ‘ 𝑊 ) ) ) ) |
| 80 | 68 79 | eqtr4d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) = ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
| 81 | 60 80 | oveq12d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) + ( seq ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) = ( ( seq 0 ( + , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) + ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
| 82 | 51 81 | eqtrd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) = ( ( seq 0 ( + , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) + ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
| 83 | 13 18 | nnaddcld | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ∈ ℕ ) |
| 84 | nnm1nn0 | ⊢ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ∈ ℕ → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ∈ ℕ0 ) | |
| 85 | 83 84 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ∈ ℕ0 ) |
| 86 | 85 34 | eleqtrdi | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 87 | 1 2 3 86 49 | gsumval2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( seq 0 ( + , ( 𝑊 ++ 𝑋 ) ) ‘ ( ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) − 1 ) ) ) |
| 88 | simp2l | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑊 ∈ Word 𝐵 ) | |
| 89 | wrdf | ⊢ ( 𝑊 ∈ Word 𝐵 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | |
| 90 | 88 89 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 91 | 55 | feq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ↔ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) ) |
| 92 | 90 91 | mpbid | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) |
| 93 | 1 2 3 35 92 | gsumval2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg 𝑊 ) = ( seq 0 ( + , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 94 | simp2r | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ∈ Word 𝐵 ) | |
| 95 | wrdf | ⊢ ( 𝑋 ∈ Word 𝐵 → 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝐵 ) | |
| 96 | 94 95 | syl | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝐵 ) |
| 97 | 73 | feq2d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝐵 ↔ 𝑋 : ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ⟶ 𝐵 ) ) |
| 98 | 96 97 | mpbid | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → 𝑋 : ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ⟶ 𝐵 ) |
| 99 | 1 2 3 69 98 | gsumval2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg 𝑋 ) = ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
| 100 | 93 99 | oveq12d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) = ( ( seq 0 ( + , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) + ( seq 0 ( + , 𝑋 ) ‘ ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
| 101 | 82 87 100 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) ∧ ( 𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( 𝐺 Σg ( 𝑊 ++ 𝑋 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 𝑋 ) ) ) |