This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009) (Revised by AV, 30-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sgrpass.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| sgrpass.o | ⊢ ⚬ = ( +g ‘ 𝐺 ) | ||
| Assertion | sgrpass | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpass.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | sgrpass.o | ⊢ ⚬ = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | issgrp | ⊢ ( 𝐺 ∈ Smgrp ↔ ( 𝐺 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 4 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑦 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑌 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) ) |
| 10 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑧 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑌 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑍 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 17 | 7 12 16 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 18 | 17 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 19 | 3 18 | simplbiim | ⊢ ( 𝐺 ∈ Smgrp → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |