This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010) (Revised by AV, 13-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mgmcl.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | mgmcl | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mgmcl.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | 1 2 | ismgm | ⊢ ( 𝑀 ∈ Mgm → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 4 | 3 | ibi | ⊢ ( 𝑀 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) |
| 5 | ovrspc2v | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) | |
| 6 | 5 | expcom | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝑀 ∈ Mgm → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
| 8 | 7 | 3impib | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) |