This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "is isomorphic to" relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gricushgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| gricushgr.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | ||
| gricushgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐴 ) | ||
| gricushgr.k | ⊢ 𝐾 = ( Edg ‘ 𝐵 ) | ||
| Assertion | gricushgr | ⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricushgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| 2 | gricushgr.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | |
| 3 | gricushgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐴 ) | |
| 4 | gricushgr.k | ⊢ 𝐾 = ( Edg ‘ 𝐵 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐴 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐵 ) = ( iEdg ‘ 𝐵 ) | |
| 7 | 1 2 5 6 | dfgric2 | ⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 8 | fvex | ⊢ ( iEdg ‘ 𝐵 ) ∈ V | |
| 9 | vex | ⊢ ℎ ∈ V | |
| 10 | fvex | ⊢ ( iEdg ‘ 𝐴 ) ∈ V | |
| 11 | 10 | cnvex | ⊢ ◡ ( iEdg ‘ 𝐴 ) ∈ V |
| 12 | 9 11 | coex | ⊢ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ∈ V |
| 13 | 8 12 | coex | ⊢ ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ∈ V |
| 14 | 13 | a1i | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ∈ V ) |
| 15 | 2 6 | ushgrf | ⊢ ( 𝐵 ∈ USHGraph → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1→ ( 𝒫 𝑊 ∖ { ∅ } ) ) |
| 16 | f1f1orn | ⊢ ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1→ ( 𝒫 𝑊 ∖ { ∅ } ) → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐵 ∈ USHGraph → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 18 | edgval | ⊢ ( Edg ‘ 𝐵 ) = ran ( iEdg ‘ 𝐵 ) | |
| 19 | 4 18 | eqtri | ⊢ 𝐾 = ran ( iEdg ‘ 𝐵 ) |
| 20 | f1oeq3 | ⊢ ( 𝐾 = ran ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ↔ ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ↔ ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 22 | 17 21 | sylibr | ⊢ ( 𝐵 ∈ USHGraph → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ) |
| 23 | 22 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ) |
| 24 | simprl | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) | |
| 25 | 1 5 | ushgrf | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 26 | f1f1orn | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) |
| 28 | edgval | ⊢ ( Edg ‘ 𝐴 ) = ran ( iEdg ‘ 𝐴 ) | |
| 29 | 3 28 | eqtri | ⊢ 𝐸 = ran ( iEdg ‘ 𝐴 ) |
| 30 | f1oeq3 | ⊢ ( 𝐸 = ran ( iEdg ‘ 𝐴 ) → ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 ↔ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) ) | |
| 31 | 29 30 | ax-mp | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 ↔ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) |
| 32 | 27 31 | sylibr | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 ) |
| 33 | f1ocnv | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 → ◡ ( iEdg ‘ 𝐴 ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) | |
| 34 | 32 33 | syl | ⊢ ( 𝐴 ∈ USHGraph → ◡ ( iEdg ‘ 𝐴 ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) |
| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ◡ ( iEdg ‘ 𝐴 ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) |
| 36 | f1oco | ⊢ ( ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ◡ ( iEdg ‘ 𝐴 ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) → ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) | |
| 37 | 24 35 36 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) |
| 38 | f1oco | ⊢ ( ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ∧ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) : 𝐸 –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) : 𝐸 –1-1-onto→ 𝐾 ) | |
| 39 | 23 37 38 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) : 𝐸 –1-1-onto→ 𝐾 ) |
| 40 | 29 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ) |
| 41 | f1fn | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐴 ) Fn dom ( iEdg ‘ 𝐴 ) ) | |
| 42 | 25 41 | syl | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) Fn dom ( iEdg ‘ 𝐴 ) ) |
| 43 | fvelrnb | ⊢ ( ( iEdg ‘ 𝐴 ) Fn dom ( iEdg ‘ 𝐴 ) → ( 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝐴 ∈ USHGraph → ( 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) ) |
| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) ) |
| 46 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) | |
| 47 | 46 | imaeq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 48 | 2fveq3 | ⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) | |
| 49 | 47 48 | eqeq12d | ⊢ ( 𝑖 = 𝑗 → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
| 50 | 49 | rspccv | ⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
| 51 | 50 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
| 52 | 51 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) |
| 53 | coass | ⊢ ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) | |
| 54 | 53 | eqcomi | ⊢ ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) |
| 55 | 54 | fveq1i | ⊢ ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) |
| 56 | dff1o4 | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ↔ ( ( iEdg ‘ 𝐴 ) Fn dom ( iEdg ‘ 𝐴 ) ∧ ◡ ( iEdg ‘ 𝐴 ) Fn ran ( iEdg ‘ 𝐴 ) ) ) | |
| 57 | 27 56 | sylib | ⊢ ( 𝐴 ∈ USHGraph → ( ( iEdg ‘ 𝐴 ) Fn dom ( iEdg ‘ 𝐴 ) ∧ ◡ ( iEdg ‘ 𝐴 ) Fn ran ( iEdg ‘ 𝐴 ) ) ) |
| 58 | 57 | simprd | ⊢ ( 𝐴 ∈ USHGraph → ◡ ( iEdg ‘ 𝐴 ) Fn ran ( iEdg ‘ 𝐴 ) ) |
| 59 | 58 | ad4antr | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ◡ ( iEdg ‘ 𝐴 ) Fn ran ( iEdg ‘ 𝐴 ) ) |
| 60 | f1of | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) | |
| 61 | 27 60 | syl | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) |
| 62 | 61 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) |
| 63 | 62 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐴 ) ) |
| 64 | fvco2 | ⊢ ( ( ◡ ( iEdg ‘ 𝐴 ) Fn ran ( iEdg ‘ 𝐴 ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐴 ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) ) | |
| 65 | 59 63 64 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐴 ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) ) |
| 66 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 ) |
| 67 | f1ocnvfv1 | ⊢ ( ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ◡ ( iEdg ‘ 𝐴 ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = 𝑗 ) | |
| 68 | 66 67 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ◡ ( iEdg ‘ 𝐴 ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = 𝑗 ) |
| 69 | 68 | fveq2d | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐴 ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ 𝑗 ) ) |
| 70 | f1ofn | ⊢ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → ℎ Fn dom ( iEdg ‘ 𝐴 ) ) | |
| 71 | 70 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ℎ Fn dom ( iEdg ‘ 𝐴 ) ) |
| 72 | fvco2 | ⊢ ( ( ℎ Fn dom ( iEdg ‘ 𝐴 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) | |
| 73 | 71 72 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) |
| 74 | 65 69 73 | 3eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( ( iEdg ‘ 𝐵 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐴 ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) |
| 75 | 55 74 | eqtr2id | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 76 | 75 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) → ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 77 | imaeq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) | |
| 78 | 77 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 79 | simpr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) | |
| 80 | 78 79 | sylan9eqr | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) → ( 𝑓 “ 𝑒 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) |
| 81 | fveq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) | |
| 82 | 81 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 83 | 82 | adantl | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
| 84 | 76 80 83 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 ) → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) |
| 85 | 84 | ex | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑗 ) ) ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 86 | 52 85 | mpdan | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 87 | 86 | rexlimdva | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) = 𝑒 → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 88 | 45 87 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 89 | 40 88 | biimtrid | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ 𝐸 → ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 90 | 89 | ralrimiv | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) |
| 91 | 39 90 | jca | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 92 | f1oeq1 | ⊢ ( 𝑔 = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) → ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ↔ ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) : 𝐸 –1-1-onto→ 𝐾 ) ) | |
| 93 | fveq1 | ⊢ ( 𝑔 = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) → ( 𝑔 ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) | |
| 94 | 93 | eqeq2d | ⊢ ( 𝑔 = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 95 | 94 | ralbidv | ⊢ ( 𝑔 = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) |
| 96 | 92 95 | anbi12d | ⊢ ( 𝑔 = ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) → ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ℎ ∘ ◡ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑒 ) ) ) ) |
| 97 | 14 91 96 | spcedv | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) |
| 98 | 97 | ex | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 99 | 98 | exlimdv | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 100 | 8 | cnvex | ⊢ ◡ ( iEdg ‘ 𝐵 ) ∈ V |
| 101 | vex | ⊢ 𝑔 ∈ V | |
| 102 | 101 10 | coex | ⊢ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ∈ V |
| 103 | 100 102 | coex | ⊢ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ∈ V |
| 104 | 103 | a1i | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ∈ V ) |
| 105 | 17 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 106 | f1ocnv | ⊢ ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) → ◡ ( iEdg ‘ 𝐵 ) : ran ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) | |
| 107 | 105 106 | syl | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ◡ ( iEdg ‘ 𝐵 ) : ran ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) |
| 108 | f1oeq23 | ⊢ ( ( 𝐸 = ran ( iEdg ‘ 𝐴 ) ∧ 𝐾 = ran ( iEdg ‘ 𝐵 ) ) → ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ↔ 𝑔 : ran ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) ) | |
| 109 | 29 19 108 | mp2an | ⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ↔ 𝑔 : ran ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 110 | 109 | biimpi | ⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 → 𝑔 : ran ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 111 | 110 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : ran ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 112 | 27 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) |
| 113 | f1oco | ⊢ ( ( 𝑔 : ran ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) | |
| 114 | 111 112 113 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) |
| 115 | f1oco | ⊢ ( ( ◡ ( iEdg ‘ 𝐵 ) : ran ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ ran ( iEdg ‘ 𝐵 ) ) → ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) | |
| 116 | 107 114 115 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) |
| 117 | 61 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) |
| 118 | 117 | ffund | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → Fun ( iEdg ‘ 𝐴 ) ) |
| 119 | 118 | adantr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → Fun ( iEdg ‘ 𝐴 ) ) |
| 120 | fvelrn | ⊢ ( ( Fun ( iEdg ‘ 𝐴 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) | |
| 121 | 119 120 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) |
| 122 | 29 | raleqi | ⊢ ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) |
| 123 | 122 | biimpi | ⊢ ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) |
| 124 | 123 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) |
| 125 | 124 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) |
| 126 | imaeq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) | |
| 127 | fveq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) | |
| 128 | 126 127 | eqeq12d | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) ) |
| 129 | 128 | rspccva | ⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐴 ) ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 130 | 125 129 | sylan | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 131 | feq3 | ⊢ ( 𝐸 = ran ( iEdg ‘ 𝐴 ) → ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ↔ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) ) | |
| 132 | 29 131 | ax-mp | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ↔ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐴 ) ) |
| 133 | 61 132 | sylibr | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) |
| 134 | 133 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) |
| 135 | f1ofn | ⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 → 𝑔 Fn 𝐸 ) | |
| 136 | 135 | adantr | ⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 Fn 𝐸 ) |
| 137 | 134 136 | anim12ci | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑔 Fn 𝐸 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) ) |
| 138 | 137 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 Fn 𝐸 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) ) |
| 139 | fnfco | ⊢ ( ( 𝑔 Fn 𝐸 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) Fn dom ( iEdg ‘ 𝐴 ) ) | |
| 140 | 138 139 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) Fn dom ( iEdg ‘ 𝐴 ) ) |
| 141 | simplr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) | |
| 142 | fvco2 | ⊢ ( ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) Fn dom ( iEdg ‘ 𝐴 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) = ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ‘ ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) ) | |
| 143 | 140 141 142 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) = ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ‘ ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) ) |
| 144 | f1of | ⊢ ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) ⟶ 𝐾 ) | |
| 145 | 22 144 | syl | ⊢ ( 𝐵 ∈ USHGraph → ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) ⟶ 𝐾 ) |
| 146 | 145 | ffund | ⊢ ( 𝐵 ∈ USHGraph → Fun ( iEdg ‘ 𝐵 ) ) |
| 147 | funcocnv2 | ⊢ ( Fun ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) = ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ) | |
| 148 | 146 147 | syl | ⊢ ( 𝐵 ∈ USHGraph → ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) = ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ) |
| 149 | 148 | eqcomd | ⊢ ( 𝐵 ∈ USHGraph → ( I ↾ ran ( iEdg ‘ 𝐵 ) ) = ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ) |
| 150 | 149 | ad5antlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( I ↾ ran ( iEdg ‘ 𝐵 ) ) = ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ) |
| 151 | 150 | coeq1d | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) |
| 152 | 151 | fveq1d | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) = ( ( ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) |
| 153 | coass | ⊢ ( ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) = ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) | |
| 154 | 153 | fveq1i | ⊢ ( ( ( ( iEdg ‘ 𝐵 ) ∘ ◡ ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) ‘ 𝑖 ) |
| 155 | 152 154 | eqtrdi | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) ‘ 𝑖 ) ) |
| 156 | f1of | ⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 → 𝑔 : 𝐸 ⟶ 𝐾 ) | |
| 157 | eqid | ⊢ 𝐸 = 𝐸 | |
| 158 | 157 19 | feq23i | ⊢ ( 𝑔 : 𝐸 ⟶ 𝐾 ↔ 𝑔 : 𝐸 ⟶ ran ( iEdg ‘ 𝐵 ) ) |
| 159 | 156 158 | sylib | ⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 → 𝑔 : 𝐸 ⟶ ran ( iEdg ‘ 𝐵 ) ) |
| 160 | 159 | adantr | ⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐸 ⟶ ran ( iEdg ‘ 𝐵 ) ) |
| 161 | f1of | ⊢ ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ 𝐸 → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) | |
| 162 | 32 161 | syl | ⊢ ( 𝐴 ∈ USHGraph → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) |
| 163 | 162 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) |
| 164 | fco | ⊢ ( ( 𝑔 : 𝐸 ⟶ ran ( iEdg ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐵 ) ) | |
| 165 | 160 163 164 | syl2anr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐵 ) ) |
| 166 | 165 | anim1i | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐵 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ) |
| 167 | 166 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐵 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ) |
| 168 | ffvelcdm | ⊢ ( ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ ran ( iEdg ‘ 𝐵 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐵 ) ) | |
| 169 | 167 168 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐵 ) ) |
| 170 | fvresi | ⊢ ( ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐵 ) → ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ‘ ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) | |
| 171 | 169 170 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ‘ ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) |
| 172 | 162 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) |
| 173 | 172 | anim1i | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ) |
| 174 | 173 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ) |
| 175 | fvco3 | ⊢ ( ( ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) | |
| 176 | 174 175 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 177 | 171 176 | eqtrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ ran ( iEdg ‘ 𝐵 ) ) ‘ ( ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 178 | 143 155 177 | 3eqtr3rd | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ‘ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) ‘ 𝑖 ) ) |
| 179 | dff1o4 | ⊢ ( ( iEdg ‘ 𝐵 ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ 𝐾 ↔ ( ( iEdg ‘ 𝐵 ) Fn dom ( iEdg ‘ 𝐵 ) ∧ ◡ ( iEdg ‘ 𝐵 ) Fn 𝐾 ) ) | |
| 180 | 22 179 | sylib | ⊢ ( 𝐵 ∈ USHGraph → ( ( iEdg ‘ 𝐵 ) Fn dom ( iEdg ‘ 𝐵 ) ∧ ◡ ( iEdg ‘ 𝐵 ) Fn 𝐾 ) ) |
| 181 | 180 | simprd | ⊢ ( 𝐵 ∈ USHGraph → ◡ ( iEdg ‘ 𝐵 ) Fn 𝐾 ) |
| 182 | 181 | ad5antlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ◡ ( iEdg ‘ 𝐵 ) Fn 𝐾 ) |
| 183 | 156 | adantr | ⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐸 ⟶ 𝐾 ) |
| 184 | 134 183 | anim12ci | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑔 : 𝐸 ⟶ 𝐾 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) ) |
| 185 | 184 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 : 𝐸 ⟶ 𝐾 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) ) |
| 186 | fco | ⊢ ( ( 𝑔 : 𝐸 ⟶ 𝐾 ∧ ( iEdg ‘ 𝐴 ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐸 ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐾 ) | |
| 187 | 185 186 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐾 ) |
| 188 | fnfco | ⊢ ( ( ◡ ( iEdg ‘ 𝐵 ) Fn 𝐾 ∧ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) : dom ( iEdg ‘ 𝐴 ) ⟶ 𝐾 ) → ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) Fn dom ( iEdg ‘ 𝐴 ) ) | |
| 189 | 182 187 188 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) Fn dom ( iEdg ‘ 𝐴 ) ) |
| 190 | fvco2 | ⊢ ( ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) Fn dom ( iEdg ‘ 𝐴 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) | |
| 191 | 189 141 190 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐵 ) ∘ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) |
| 192 | 130 178 191 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) |
| 193 | 121 192 | mpdan | ⊢ ( ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) |
| 194 | 193 | ralrimiva | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) |
| 195 | 116 194 | jca | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) ) |
| 196 | f1oeq1 | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ↔ ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) ) | |
| 197 | fveq1 | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ℎ ‘ 𝑖 ) = ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) | |
| 198 | 197 | fveq2d | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) |
| 199 | 198 | eqeq2d | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) ) |
| 200 | 199 | ralbidv | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) ) |
| 201 | 196 200 | anbi12d | ⊢ ( ℎ = ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) → ( ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( ◡ ( iEdg ‘ 𝐵 ) ∘ ( 𝑔 ∘ ( iEdg ‘ 𝐴 ) ) ) ‘ 𝑖 ) ) ) ) ) |
| 202 | 104 195 201 | spcedv | ⊢ ( ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 203 | 202 | ex | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 204 | 203 | exlimdv | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 205 | 99 204 | impbid | ⊢ ( ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 206 | 205 | pm5.32da | ⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 207 | 206 | exbidv | ⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 208 | 7 207 | bitrd | ⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |