This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrf.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | ushgrf | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 : dom 𝐸 –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrf.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isushgr | ⊢ ( 𝐺 ∈ USHGraph → ( 𝐺 ∈ USHGraph ↔ 𝐸 : dom 𝐸 –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 : dom 𝐸 –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |