This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in Bollobas p. 3. (Contributed by AV, 1-Dec-2022) (Proof shortened by AV, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gricushgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| gricushgr.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | ||
| gricushgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐴 ) | ||
| gricushgr.k | ⊢ 𝐾 = ( Edg ‘ 𝐵 ) | ||
| Assertion | gricuspgr | ⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricushgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| 2 | gricushgr.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | |
| 3 | gricushgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐴 ) | |
| 4 | gricushgr.k | ⊢ 𝐾 = ( Edg ‘ 𝐵 ) | |
| 5 | brgric | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ) | |
| 6 | n0 | ⊢ ( ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) ) |
| 9 | 1 2 3 4 | isuspgrim | ⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
| 10 | 9 | exbidv | ⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
| 11 | 8 10 | bitrd | ⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |