This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcocnv2 | ⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) ) | |
| 2 | 1 | simprbi | ⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) |
| 3 | iss | ⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) ) | |
| 4 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 5 | dmcoeq | ⊢ ( dom 𝐹 = ran ◡ 𝐹 → dom ( 𝐹 ∘ ◡ 𝐹 ) = dom ◡ 𝐹 ) | |
| 6 | 4 5 | ax-mp | ⊢ dom ( 𝐹 ∘ ◡ 𝐹 ) = dom ◡ 𝐹 |
| 7 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 8 | 6 7 | eqtr4i | ⊢ dom ( 𝐹 ∘ ◡ 𝐹 ) = ran 𝐹 |
| 9 | 8 | reseq2i | ⊢ ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) = ( I ↾ ran 𝐹 ) |
| 10 | 9 | eqeq2i | ⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ dom ( 𝐹 ∘ ◡ 𝐹 ) ) ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
| 11 | 3 10 | bitri | ⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ↔ ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
| 12 | 2 11 | sylib | ⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |