This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "is isomorphic to" relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gricushgr.v | |- V = ( Vtx ` A ) |
|
| gricushgr.w | |- W = ( Vtx ` B ) |
||
| gricushgr.e | |- E = ( Edg ` A ) |
||
| gricushgr.k | |- K = ( Edg ` B ) |
||
| Assertion | gricushgr | |- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricushgr.v | |- V = ( Vtx ` A ) |
|
| 2 | gricushgr.w | |- W = ( Vtx ` B ) |
|
| 3 | gricushgr.e | |- E = ( Edg ` A ) |
|
| 4 | gricushgr.k | |- K = ( Edg ` B ) |
|
| 5 | eqid | |- ( iEdg ` A ) = ( iEdg ` A ) |
|
| 6 | eqid | |- ( iEdg ` B ) = ( iEdg ` B ) |
|
| 7 | 1 2 5 6 | dfgric2 | |- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) ) |
| 8 | fvex | |- ( iEdg ` B ) e. _V |
|
| 9 | vex | |- h e. _V |
|
| 10 | fvex | |- ( iEdg ` A ) e. _V |
|
| 11 | 10 | cnvex | |- `' ( iEdg ` A ) e. _V |
| 12 | 9 11 | coex | |- ( h o. `' ( iEdg ` A ) ) e. _V |
| 13 | 8 12 | coex | |- ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) e. _V |
| 14 | 13 | a1i | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) e. _V ) |
| 15 | 2 6 | ushgrf | |- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-> ( ~P W \ { (/) } ) ) |
| 16 | f1f1orn | |- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-> ( ~P W \ { (/) } ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
|
| 17 | 15 16 | syl | |- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 18 | edgval | |- ( Edg ` B ) = ran ( iEdg ` B ) |
|
| 19 | 4 18 | eqtri | |- K = ran ( iEdg ` B ) |
| 20 | f1oeq3 | |- ( K = ran ( iEdg ` B ) -> ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 22 | 17 21 | sylibr | |- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K ) |
| 23 | 22 | ad3antlr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K ) |
| 24 | simprl | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
|
| 25 | 1 5 | ushgrf | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) ) |
| 26 | f1f1orn | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
|
| 27 | 25 26 | syl | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 28 | edgval | |- ( Edg ` A ) = ran ( iEdg ` A ) |
|
| 29 | 3 28 | eqtri | |- E = ran ( iEdg ` A ) |
| 30 | f1oeq3 | |- ( E = ran ( iEdg ` A ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) ) |
|
| 31 | 29 30 | ax-mp | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 32 | 27 31 | sylibr | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E ) |
| 33 | f1ocnv | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
|
| 34 | 32 33 | syl | |- ( A e. USHGraph -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
| 35 | 34 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
| 36 | f1oco | |- ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) -> ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) |
|
| 37 | 24 35 36 | syl2anc | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) |
| 38 | f1oco | |- ( ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K /\ ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) |
|
| 39 | 23 37 38 | syl2anc | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) |
| 40 | 29 | eleq2i | |- ( e e. E <-> e e. ran ( iEdg ` A ) ) |
| 41 | f1fn | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` A ) Fn dom ( iEdg ` A ) ) |
|
| 42 | 25 41 | syl | |- ( A e. USHGraph -> ( iEdg ` A ) Fn dom ( iEdg ` A ) ) |
| 43 | fvelrnb | |- ( ( iEdg ` A ) Fn dom ( iEdg ` A ) -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
|
| 44 | 42 43 | syl | |- ( A e. USHGraph -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
| 45 | 44 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
| 46 | fveq2 | |- ( i = j -> ( ( iEdg ` A ) ` i ) = ( ( iEdg ` A ) ` j ) ) |
|
| 47 | 46 | imaeq2d | |- ( i = j -> ( f " ( ( iEdg ` A ) ` i ) ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
| 48 | 2fveq3 | |- ( i = j -> ( ( iEdg ` B ) ` ( h ` i ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
|
| 49 | 47 48 | eqeq12d | |- ( i = j -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 50 | 49 | rspccv | |- ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 51 | 50 | ad2antll | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 52 | 51 | imp | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 53 | coass | |- ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) |
|
| 54 | 53 | eqcomi | |- ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) = ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) |
| 55 | 54 | fveq1i | |- ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) |
| 56 | dff1o4 | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) <-> ( ( iEdg ` A ) Fn dom ( iEdg ` A ) /\ `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) ) |
|
| 57 | 27 56 | sylib | |- ( A e. USHGraph -> ( ( iEdg ` A ) Fn dom ( iEdg ` A ) /\ `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) ) |
| 58 | 57 | simprd | |- ( A e. USHGraph -> `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) |
| 59 | 58 | ad4antr | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) |
| 60 | f1of | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
|
| 61 | 27 60 | syl | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 62 | 61 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 63 | 62 | ffvelcdmda | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` j ) e. ran ( iEdg ` A ) ) |
| 64 | fvco2 | |- ( ( `' ( iEdg ` A ) Fn ran ( iEdg ` A ) /\ ( ( iEdg ` A ) ` j ) e. ran ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) ) |
|
| 65 | 59 63 64 | syl2anc | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) ) |
| 66 | 32 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E ) |
| 67 | f1ocnvfv1 | |- ( ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E /\ j e. dom ( iEdg ` A ) ) -> ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) = j ) |
|
| 68 | 66 67 | sylan | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) = j ) |
| 69 | 68 | fveq2d | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) = ( ( ( iEdg ` B ) o. h ) ` j ) ) |
| 70 | f1ofn | |- ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> h Fn dom ( iEdg ` A ) ) |
|
| 71 | 70 | ad2antrl | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> h Fn dom ( iEdg ` A ) ) |
| 72 | fvco2 | |- ( ( h Fn dom ( iEdg ` A ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` j ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
|
| 73 | 71 72 | sylan | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` j ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 74 | 65 69 73 | 3eqtrd | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 75 | 55 74 | eqtr2id | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( iEdg ` B ) ` ( h ` j ) ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 76 | 75 | ad2antrr | |- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( ( iEdg ` B ) ` ( h ` j ) ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 77 | imaeq2 | |- ( e = ( ( iEdg ` A ) ` j ) -> ( f " e ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
|
| 78 | 77 | eqcoms | |- ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
| 79 | simpr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
|
| 80 | 78 79 | sylan9eqr | |- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( f " e ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 81 | fveq2 | |- ( e = ( ( iEdg ` A ) ` j ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
|
| 82 | 81 | eqcoms | |- ( ( ( iEdg ` A ) ` j ) = e -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 83 | 82 | adantl | |- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 84 | 76 80 83 | 3eqtr4d | |- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
| 85 | 84 | ex | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) -> ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 86 | 52 85 | mpdan | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 87 | 86 | rexlimdva | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 88 | 45 87 | sylbid | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. ran ( iEdg ` A ) -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 89 | 40 88 | biimtrid | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. E -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 90 | 89 | ralrimiv | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
| 91 | 39 90 | jca | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 92 | f1oeq1 | |- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( g : E -1-1-onto-> K <-> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) ) |
|
| 93 | fveq1 | |- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( g ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
|
| 94 | 93 | eqeq2d | |- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( ( f " e ) = ( g ` e ) <-> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 95 | 94 | ralbidv | |- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( A. e e. E ( f " e ) = ( g ` e ) <-> A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 96 | 92 95 | anbi12d | |- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) <-> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) ) |
| 97 | 14 91 96 | spcedv | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) |
| 98 | 97 | ex | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 99 | 98 | exlimdv | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 100 | 8 | cnvex | |- `' ( iEdg ` B ) e. _V |
| 101 | vex | |- g e. _V |
|
| 102 | 101 10 | coex | |- ( g o. ( iEdg ` A ) ) e. _V |
| 103 | 100 102 | coex | |- ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) e. _V |
| 104 | 103 | a1i | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) e. _V ) |
| 105 | 17 | ad3antlr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 106 | f1ocnv | |- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) -> `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) ) |
|
| 107 | 105 106 | syl | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 108 | f1oeq23 | |- ( ( E = ran ( iEdg ` A ) /\ K = ran ( iEdg ` B ) ) -> ( g : E -1-1-onto-> K <-> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) ) |
|
| 109 | 29 19 108 | mp2an | |- ( g : E -1-1-onto-> K <-> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 110 | 109 | biimpi | |- ( g : E -1-1-onto-> K -> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 111 | 110 | ad2antrl | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 112 | 27 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 113 | f1oco | |- ( ( g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) /\ ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
|
| 114 | 111 112 113 | syl2anc | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 115 | f1oco | |- ( ( `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) /\ ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
|
| 116 | 107 114 115 | syl2anc | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 117 | 61 | ad2antrr | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 118 | 117 | ffund | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> Fun ( iEdg ` A ) ) |
| 119 | 118 | adantr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> Fun ( iEdg ` A ) ) |
| 120 | fvelrn | |- ( ( Fun ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) |
|
| 121 | 119 120 | sylan | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) |
| 122 | 29 | raleqi | |- ( A. e e. E ( f " e ) = ( g ` e ) <-> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 123 | 122 | biimpi | |- ( A. e e. E ( f " e ) = ( g ` e ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 124 | 123 | ad2antll | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 125 | 124 | adantr | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 126 | imaeq2 | |- ( e = ( ( iEdg ` A ) ` i ) -> ( f " e ) = ( f " ( ( iEdg ` A ) ` i ) ) ) |
|
| 127 | fveq2 | |- ( e = ( ( iEdg ` A ) ` i ) -> ( g ` e ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
|
| 128 | 126 127 | eqeq12d | |- ( e = ( ( iEdg ` A ) ` i ) -> ( ( f " e ) = ( g ` e ) <-> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) ) |
| 129 | 128 | rspccva | |- ( ( A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 130 | 125 129 | sylan | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 131 | feq3 | |- ( E = ran ( iEdg ` A ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) ) |
|
| 132 | 29 131 | ax-mp | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 133 | 61 132 | sylibr | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 134 | 133 | ad2antrr | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 135 | f1ofn | |- ( g : E -1-1-onto-> K -> g Fn E ) |
|
| 136 | 135 | adantr | |- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g Fn E ) |
| 137 | 134 136 | anim12ci | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 138 | 137 | ad2antrr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 139 | fnfco | |- ( ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) ) |
|
| 140 | 138 139 | syl | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) ) |
| 141 | simplr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> i e. dom ( iEdg ` A ) ) |
|
| 142 | fvco2 | |- ( ( ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) ) |
|
| 143 | 140 141 142 | syl2anc | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) ) |
| 144 | f1of | |- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K -> ( iEdg ` B ) : dom ( iEdg ` B ) --> K ) |
|
| 145 | 22 144 | syl | |- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) --> K ) |
| 146 | 145 | ffund | |- ( B e. USHGraph -> Fun ( iEdg ` B ) ) |
| 147 | funcocnv2 | |- ( Fun ( iEdg ` B ) -> ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) = ( _I |` ran ( iEdg ` B ) ) ) |
|
| 148 | 146 147 | syl | |- ( B e. USHGraph -> ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) = ( _I |` ran ( iEdg ` B ) ) ) |
| 149 | 148 | eqcomd | |- ( B e. USHGraph -> ( _I |` ran ( iEdg ` B ) ) = ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) ) |
| 150 | 149 | ad5antlr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( _I |` ran ( iEdg ` B ) ) = ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) ) |
| 151 | 150 | coeq1d | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) = ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ) |
| 152 | 151 | fveq1d | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) |
| 153 | coass | |- ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) = ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) |
|
| 154 | 153 | fveq1i | |- ( ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) |
| 155 | 152 154 | eqtrdi | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) ) |
| 156 | f1of | |- ( g : E -1-1-onto-> K -> g : E --> K ) |
|
| 157 | eqid | |- E = E |
|
| 158 | 157 19 | feq23i | |- ( g : E --> K <-> g : E --> ran ( iEdg ` B ) ) |
| 159 | 156 158 | sylib | |- ( g : E -1-1-onto-> K -> g : E --> ran ( iEdg ` B ) ) |
| 160 | 159 | adantr | |- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g : E --> ran ( iEdg ` B ) ) |
| 161 | f1of | |- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
|
| 162 | 32 161 | syl | |- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 163 | 162 | ad2antrr | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 164 | fco | |- ( ( g : E --> ran ( iEdg ` B ) /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) ) |
|
| 165 | 160 163 164 | syl2anr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) ) |
| 166 | 165 | anim1i | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) ) |
| 167 | 166 | adantr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) ) |
| 168 | ffvelcdm | |- ( ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) ) |
|
| 169 | 167 168 | syl | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) ) |
| 170 | fvresi | |- ( ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( ( g o. ( iEdg ` A ) ) ` i ) ) |
|
| 171 | 169 170 | syl | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( ( g o. ( iEdg ` A ) ) ` i ) ) |
| 172 | 162 | ad3antrrr | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 173 | 172 | anim1i | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) ) |
| 174 | 173 | adantr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) ) |
| 175 | fvco3 | |- ( ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
|
| 176 | 174 175 | syl | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 177 | 171 176 | eqtrd | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 178 | 143 155 177 | 3eqtr3rd | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g ` ( ( iEdg ` A ) ` i ) ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) ) |
| 179 | dff1o4 | |- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( ( iEdg ` B ) Fn dom ( iEdg ` B ) /\ `' ( iEdg ` B ) Fn K ) ) |
|
| 180 | 22 179 | sylib | |- ( B e. USHGraph -> ( ( iEdg ` B ) Fn dom ( iEdg ` B ) /\ `' ( iEdg ` B ) Fn K ) ) |
| 181 | 180 | simprd | |- ( B e. USHGraph -> `' ( iEdg ` B ) Fn K ) |
| 182 | 181 | ad5antlr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> `' ( iEdg ` B ) Fn K ) |
| 183 | 156 | adantr | |- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g : E --> K ) |
| 184 | 134 183 | anim12ci | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 185 | 184 | ad2antrr | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 186 | fco | |- ( ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) |
|
| 187 | 185 186 | syl | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) |
| 188 | fnfco | |- ( ( `' ( iEdg ` B ) Fn K /\ ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) ) |
|
| 189 | 182 187 188 | syl2anc | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) ) |
| 190 | fvco2 | |- ( ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
|
| 191 | 189 141 190 | syl2anc | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 192 | 130 178 191 | 3eqtrd | |- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 193 | 121 192 | mpdan | |- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 194 | 193 | ralrimiva | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 195 | 116 194 | jca | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 196 | f1oeq1 | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) <-> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) ) |
|
| 197 | fveq1 | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( h ` i ) = ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) |
|
| 198 | 197 | fveq2d | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( iEdg ` B ) ` ( h ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 199 | 198 | eqeq2d | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 200 | 199 | ralbidv | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 201 | 196 200 | anbi12d | |- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) <-> ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) ) |
| 202 | 104 195 201 | spcedv | |- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) |
| 203 | 202 | ex | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) |
| 204 | 203 | exlimdv | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) |
| 205 | 99 204 | impbid | |- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) <-> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 206 | 205 | pm5.32da | |- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |
| 207 | 206 | exbidv | |- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( E. f ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |
| 208 | 7 207 | bitrd | |- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |