This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgric2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| dfgric2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | ||
| dfgric2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐴 ) | ||
| dfgric2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐵 ) | ||
| Assertion | dfgric2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgric2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| 2 | dfgric2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | |
| 3 | dfgric2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐴 ) | |
| 4 | dfgric2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐵 ) | |
| 5 | brgric | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ) | |
| 6 | n0 | ⊢ ( ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
| 8 | vex | ⊢ 𝑓 ∈ V | |
| 9 | 1 2 3 4 | isgrim | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ) ) ) |
| 10 | eqcom | ⊢ ( ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) | |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 15 | 9 14 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 16 | 8 15 | mp3an3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 17 | 16 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 18 | 7 17 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |