This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if E = 0 , for example in an infinite p-group, where there are elements of arbitrarily large orders (so E is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexex.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | gexex | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexex.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | simpll | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝐺 ∈ Abel ) | |
| 5 | simplr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝐸 ∈ ℕ ) | |
| 6 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝑥 ∈ 𝑋 ) | |
| 7 | 1 3 | odf | ⊢ 𝑂 : 𝑋 ⟶ ℕ0 |
| 8 | frn | ⊢ ( 𝑂 : 𝑋 ⟶ ℕ0 → ran 𝑂 ⊆ ℕ0 ) | |
| 9 | 7 8 | ax-mp | ⊢ ran 𝑂 ⊆ ℕ0 |
| 10 | nn0ssz | ⊢ ℕ0 ⊆ ℤ | |
| 11 | 9 10 | sstri | ⊢ ran 𝑂 ⊆ ℤ |
| 12 | nnz | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℤ ) |
| 14 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝐺 ∈ Grp ) |
| 16 | 1 2 3 | gexod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 ) |
| 17 | 15 16 | sylan | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 ) |
| 18 | 1 3 | odcl | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 20 | 19 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℤ ) |
| 21 | simplr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℕ ) | |
| 22 | dvdsle | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℤ ∧ 𝐸 ∈ ℕ ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) | |
| 23 | 20 21 22 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
| 24 | 17 23 | mpd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
| 25 | 24 | ralrimiva | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
| 26 | ffn | ⊢ ( 𝑂 : 𝑋 ⟶ ℕ0 → 𝑂 Fn 𝑋 ) | |
| 27 | 7 26 | ax-mp | ⊢ 𝑂 Fn 𝑋 |
| 28 | breq1 | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝑥 ) → ( 𝑦 ≤ 𝐸 ↔ ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) | |
| 29 | 28 | ralrn | ⊢ ( 𝑂 Fn 𝑋 → ( ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
| 30 | 27 29 | ax-mp | ⊢ ( ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
| 31 | 25 30 | sylibr | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ) |
| 32 | brralrspcev | ⊢ ( ( 𝐸 ∈ ℤ ∧ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) | |
| 33 | 13 31 32 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) |
| 35 | 27 | a1i | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝑂 Fn 𝑋 ) |
| 36 | fnfvelrn | ⊢ ( ( 𝑂 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) | |
| 37 | 35 36 | sylan | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) |
| 38 | suprzub | ⊢ ( ( ran 𝑂 ⊆ ℤ ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ∧ ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) → ( 𝑂 ‘ 𝑦 ) ≤ sup ( ran 𝑂 , ℝ , < ) ) | |
| 39 | 11 34 37 38 | mp3an2i | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ sup ( ran 𝑂 , ℝ , < ) ) |
| 40 | simplrr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) | |
| 41 | 39 40 | breqtrrd | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) |
| 42 | 1 2 3 4 5 6 41 | gexexlem | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → ( 𝑂 ‘ 𝑥 ) = 𝐸 ) |
| 43 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 44 | 15 43 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝑋 ≠ ∅ ) |
| 45 | 7 | fdmi | ⊢ dom 𝑂 = 𝑋 |
| 46 | 45 | eqeq1i | ⊢ ( dom 𝑂 = ∅ ↔ 𝑋 = ∅ ) |
| 47 | dm0rn0 | ⊢ ( dom 𝑂 = ∅ ↔ ran 𝑂 = ∅ ) | |
| 48 | 46 47 | bitr3i | ⊢ ( 𝑋 = ∅ ↔ ran 𝑂 = ∅ ) |
| 49 | 48 | necon3bii | ⊢ ( 𝑋 ≠ ∅ ↔ ran 𝑂 ≠ ∅ ) |
| 50 | 44 49 | sylib | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ran 𝑂 ≠ ∅ ) |
| 51 | suprzcl2 | ⊢ ( ( ran 𝑂 ⊆ ℤ ∧ ran 𝑂 ≠ ∅ ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) → sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ) | |
| 52 | 11 50 33 51 | mp3an2i | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ) |
| 53 | fvelrnb | ⊢ ( 𝑂 Fn 𝑋 → ( sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) | |
| 54 | 27 53 | ax-mp | ⊢ ( sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) |
| 55 | 52 54 | sylib | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) |
| 56 | 42 55 | reximddv | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = 𝐸 ) |