This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | odadd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → 𝐺 ∈ Abel ) | |
| 5 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → 𝐺 ∈ Grp ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → 𝐴 ∈ 𝑋 ) | |
| 8 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → 𝐵 ∈ 𝑋 ) | |
| 9 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 11 | 2 1 | odcl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 13 | 2 1 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 14 | 7 13 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 15 | 2 1 | odcl | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 16 | 8 15 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 17 | 14 16 | nn0mulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 18 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) | |
| 19 | 18 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 1 ) ) |
| 20 | 12 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
| 21 | 20 | mulridd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 1 ) = ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 22 | 19 21 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 23 | 1 2 3 | odadd1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 25 | 22 24 | eqbrtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 26 | 1 2 3 | odadd2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 28 | 18 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 29 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 30 | 28 29 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = 1 ) |
| 31 | 30 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 1 ) ) |
| 32 | 31 21 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 33 | 27 32 | breqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 34 | dvdseq | ⊢ ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∧ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) | |
| 35 | 12 17 25 33 34 | syl22anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 1 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |