This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltexp2d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ltexp2d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| ltexp2d.4 | ⊢ ( 𝜑 → 1 < 𝐴 ) | ||
| Assertion | leexp2d | ⊢ ( 𝜑 → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltexp2d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ltexp2d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | ltexp2d.4 | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
| 5 | leexp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 6 | 1 2 3 4 5 | syl31anc | ⊢ ( 𝜑 → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) ) |