This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | gexod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 2 4 5 | gexid | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 8 | 1 2 | gexcl | ⊢ ( 𝐺 ∈ Grp → 𝐸 ∈ ℕ0 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℕ0 ) |
| 10 | 9 | nn0zd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℤ ) |
| 11 | 1 3 4 5 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 12 | 10 11 | mpd3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |