This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | gexnnod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | nnne0 | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ≠ 0 ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ≠ 0 ) |
| 6 | nnz | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℤ ) |
| 8 | 0dvds | ⊢ ( 𝐸 ∈ ℤ → ( 0 ∥ 𝐸 ↔ 𝐸 = 0 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 0 ∥ 𝐸 ↔ 𝐸 = 0 ) ) |
| 10 | 9 | necon3bbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ¬ 0 ∥ 𝐸 ↔ 𝐸 ≠ 0 ) ) |
| 11 | 5 10 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ¬ 0 ∥ 𝐸 ) |
| 12 | 1 2 3 | gexod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 13 | 12 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 14 | breq1 | ⊢ ( ( 𝑂 ‘ 𝐴 ) = 0 → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ 0 ∥ 𝐸 ) ) | |
| 15 | 13 14 | syl5ibcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 0 ∥ 𝐸 ) ) |
| 16 | 11 15 | mtod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ¬ ( 𝑂 ‘ 𝐴 ) = 0 ) |
| 17 | 1 3 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 19 | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 21 | 20 | ord | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 22 | 16 21 | mt3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |