This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 2 | rpexp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) | |
| 3 | 2 | biimprd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) | |
| 6 | 5 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 0 ) ) |
| 7 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝐴 ∈ ℂ ) |
| 9 | 8 | exp0d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 𝑀 ) = 1 ) |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = ( 1 gcd 𝐵 ) ) |
| 12 | 1gcd | ⊢ ( 𝐵 ∈ ℤ → ( 1 gcd 𝐵 ) = 1 ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 1 gcd 𝐵 ) = 1 ) |
| 14 | 11 13 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) |
| 15 | 14 | a1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 16 | 4 15 | jaodan | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 17 | 1 16 | sylan2b | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 18 | 17 | 3impa | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |