This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcllem2.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 } | |
| gcdcllem2.2 | ⊢ 𝑅 = { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } | ||
| Assertion | gcdcllem3 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( 𝑅 , ℝ , < ) ∈ ℕ ∧ ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ∧ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcllem2.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 } | |
| 2 | gcdcllem2.2 | ⊢ 𝑅 = { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } | |
| 3 | 2 | ssrab3 | ⊢ 𝑅 ⊆ ℤ |
| 4 | prssi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑀 , 𝑁 } ⊆ ℤ ) | |
| 5 | neorian | ⊢ ( ( 𝑀 ≠ 0 ∨ 𝑁 ≠ 0 ) ↔ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) | |
| 6 | prid1g | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ { 𝑀 , 𝑁 } ) | |
| 7 | neeq1 | ⊢ ( 𝑛 = 𝑀 → ( 𝑛 ≠ 0 ↔ 𝑀 ≠ 0 ) ) | |
| 8 | 7 | rspcev | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 11 | prid2g | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ { 𝑀 , 𝑁 } ) | |
| 12 | neeq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ≠ 0 ↔ 𝑁 ≠ 0 ) ) | |
| 13 | 12 | rspcev | ⊢ ( ( 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 14 | 11 13 | sylan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 16 | 10 15 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ≠ 0 ∨ 𝑁 ≠ 0 ) ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 17 | 5 16 | sylan2br | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) |
| 18 | 1 | gcdcllem1 | ⊢ ( ( { 𝑀 , 𝑁 } ⊆ ℤ ∧ ∃ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑛 ≠ 0 ) → ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 19 | 4 17 18 | syl2an2r | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 20 | 1 2 | gcdcllem2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑅 = 𝑆 ) |
| 21 | neeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) | |
| 22 | raleq | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) | |
| 23 | 22 | rexbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 24 | 21 23 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) ↔ ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
| 25 | 20 24 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) ↔ ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) ↔ ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
| 27 | 19 26 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) ) |
| 28 | suprzcl2 | ⊢ ( ( 𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) → sup ( 𝑅 , ℝ , < ) ∈ 𝑅 ) | |
| 29 | 3 28 | mp3an1 | ⊢ ( ( 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) → sup ( 𝑅 , ℝ , < ) ∈ 𝑅 ) |
| 30 | 27 29 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → sup ( 𝑅 , ℝ , < ) ∈ 𝑅 ) |
| 31 | 3 30 | sselid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → sup ( 𝑅 , ℝ , < ) ∈ ℤ ) |
| 32 | 27 | simprd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) |
| 33 | 1dvds | ⊢ ( 𝑀 ∈ ℤ → 1 ∥ 𝑀 ) | |
| 34 | 1dvds | ⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) | |
| 35 | 33 34 | anim12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 ∥ 𝑀 ∧ 1 ∥ 𝑁 ) ) |
| 36 | 1z | ⊢ 1 ∈ ℤ | |
| 37 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ∥ 𝑀 ↔ 1 ∥ 𝑀 ) ) | |
| 38 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ∥ 𝑁 ↔ 1 ∥ 𝑁 ) ) | |
| 39 | 37 38 | anbi12d | ⊢ ( 𝑧 = 1 → ( ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) ↔ ( 1 ∥ 𝑀 ∧ 1 ∥ 𝑁 ) ) ) |
| 40 | 39 2 | elrab2 | ⊢ ( 1 ∈ 𝑅 ↔ ( 1 ∈ ℤ ∧ ( 1 ∥ 𝑀 ∧ 1 ∥ 𝑁 ) ) ) |
| 41 | 36 40 | mpbiran | ⊢ ( 1 ∈ 𝑅 ↔ ( 1 ∥ 𝑀 ∧ 1 ∥ 𝑁 ) ) |
| 42 | 35 41 | sylibr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 1 ∈ 𝑅 ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 1 ∈ 𝑅 ) |
| 44 | suprzub | ⊢ ( ( 𝑅 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ∧ 1 ∈ 𝑅 ) → 1 ≤ sup ( 𝑅 , ℝ , < ) ) | |
| 45 | 3 32 43 44 | mp3an2i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 1 ≤ sup ( 𝑅 , ℝ , < ) ) |
| 46 | elnnz1 | ⊢ ( sup ( 𝑅 , ℝ , < ) ∈ ℕ ↔ ( sup ( 𝑅 , ℝ , < ) ∈ ℤ ∧ 1 ≤ sup ( 𝑅 , ℝ , < ) ) ) | |
| 47 | 31 45 46 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → sup ( 𝑅 , ℝ , < ) ∈ ℕ ) |
| 48 | breq1 | ⊢ ( 𝑥 = sup ( 𝑅 , ℝ , < ) → ( 𝑥 ∥ 𝑀 ↔ sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ) ) | |
| 49 | breq1 | ⊢ ( 𝑥 = sup ( 𝑅 , ℝ , < ) → ( 𝑥 ∥ 𝑁 ↔ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ) | |
| 50 | 48 49 | anbi12d | ⊢ ( 𝑥 = sup ( 𝑅 , ℝ , < ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ↔ ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ) ) |
| 51 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀 ) ) | |
| 52 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁 ) ) | |
| 53 | 51 52 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) ↔ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
| 54 | 53 | cbvrabv | ⊢ { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) } |
| 55 | 2 54 | eqtri | ⊢ 𝑅 = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) } |
| 56 | 50 55 | elrab2 | ⊢ ( sup ( 𝑅 , ℝ , < ) ∈ 𝑅 ↔ ( sup ( 𝑅 , ℝ , < ) ∈ ℤ ∧ ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ) ) |
| 57 | 30 56 | sylib | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( 𝑅 , ℝ , < ) ∈ ℤ ∧ ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ) ) |
| 58 | 57 | simprd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ) |
| 59 | breq1 | ⊢ ( 𝑧 = 𝐾 → ( 𝑧 ∥ 𝑀 ↔ 𝐾 ∥ 𝑀 ) ) | |
| 60 | breq1 | ⊢ ( 𝑧 = 𝐾 → ( 𝑧 ∥ 𝑁 ↔ 𝐾 ∥ 𝑁 ) ) | |
| 61 | 59 60 | anbi12d | ⊢ ( 𝑧 = 𝐾 → ( ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) ↔ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) ) |
| 62 | 61 2 | elrab2 | ⊢ ( 𝐾 ∈ 𝑅 ↔ ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) ) |
| 63 | 62 | biimpri | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) → 𝐾 ∈ 𝑅 ) |
| 64 | 63 | 3impb | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ∈ 𝑅 ) |
| 65 | suprzub | ⊢ ( ( 𝑅 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ∧ 𝐾 ∈ 𝑅 ) → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) | |
| 66 | 65 | 3expia | ⊢ ( ( 𝑅 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 ) → ( 𝐾 ∈ 𝑅 → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) ) |
| 67 | 3 66 | mpan | ⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑅 𝑦 ≤ 𝑥 → ( 𝐾 ∈ 𝑅 → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) ) |
| 68 | 32 64 67 | syl2im | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) ) |
| 69 | 47 58 68 | 3jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( 𝑅 , ℝ , < ) ∈ ℕ ∧ ( sup ( 𝑅 , ℝ , < ) ∥ 𝑀 ∧ sup ( 𝑅 , ℝ , < ) ∥ 𝑁 ) ∧ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( 𝑅 , ℝ , < ) ) ) ) |