This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gcdcllem1.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 } | |
| Assertion | gcdcllem1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcllem1.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 } | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | ssel | ⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → 𝑛 ∈ ℤ ) ) | |
| 4 | 1dvds | ⊢ ( 𝑛 ∈ ℤ → 1 ∥ 𝑛 ) | |
| 5 | 3 4 | syl6 | ⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → 1 ∥ 𝑛 ) ) |
| 6 | 5 | ralrimiv | ⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) |
| 7 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ∥ 𝑛 ↔ 1 ∥ 𝑛 ) ) | |
| 8 | 7 | ralbidv | ⊢ ( 𝑧 = 1 → ( ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) ) |
| 9 | 8 1 | elrab2 | ⊢ ( 1 ∈ 𝑆 ↔ ( 1 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) ) |
| 10 | 9 | biimpri | ⊢ ( ( 1 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 1 ∥ 𝑛 ) → 1 ∈ 𝑆 ) |
| 11 | 2 6 10 | sylancr | ⊢ ( 𝐴 ⊆ ℤ → 1 ∈ 𝑆 ) |
| 12 | 11 | ne0d | ⊢ ( 𝐴 ⊆ ℤ → 𝑆 ≠ ∅ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → 𝑆 ≠ ∅ ) |
| 14 | neeq1 | ⊢ ( 𝑛 = 𝑤 → ( 𝑛 ≠ 0 ↔ 𝑤 ≠ 0 ) ) | |
| 15 | 14 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ↔ ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 ) |
| 16 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∥ 𝑛 ↔ 𝑦 ∥ 𝑛 ) ) | |
| 17 | 16 | ralbidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) ) |
| 18 | 17 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ℤ ∧ ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) ) |
| 19 | 18 | simprbi | ⊢ ( 𝑦 ∈ 𝑆 → ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ) |
| 20 | 18 | simplbi | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℤ ) |
| 21 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) | |
| 22 | dvdsleabs | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0 ) → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) | |
| 23 | 22 | 3expia | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 24 | 21 23 | sylan2 | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 25 | 24 | anassrs | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ≠ 0 → ( 𝑦 ∥ 𝑛 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 26 | 25 | com23 | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 27 | 26 | ralrimiva | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 28 | 27 | ancoms | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 29 | 20 28 | sylan2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) |
| 30 | r19.26 | ⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) ↔ ( ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) ) | |
| 31 | pm3.35 | ⊢ ( ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) | |
| 32 | 31 | ralimi | ⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 ∧ ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
| 33 | 30 32 | sylbir | ⊢ ( ( ∀ 𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑦 ∥ 𝑛 → ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
| 34 | 19 29 33 | syl2an2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
| 35 | 34 | ralrimiva | ⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑛 = 𝑤 → ( abs ‘ 𝑛 ) = ( abs ‘ 𝑤 ) ) | |
| 37 | 36 | breq2d | ⊢ ( 𝑛 = 𝑤 → ( 𝑦 ≤ ( abs ‘ 𝑛 ) ↔ 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 38 | 14 37 | imbi12d | ⊢ ( 𝑛 = 𝑤 → ( ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) ) |
| 39 | 38 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 40 | 39 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 41 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) | |
| 42 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) | |
| 43 | 42 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝑆 ( 𝑤 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 44 | 40 41 43 | 3bitri | ⊢ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑛 ∈ 𝐴 ( 𝑛 ≠ 0 → 𝑦 ≤ ( abs ‘ 𝑛 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 45 | 35 44 | sylib | ⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 46 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) | |
| 47 | nn0abscl | ⊢ ( 𝑤 ∈ ℤ → ( abs ‘ 𝑤 ) ∈ ℕ0 ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( abs ‘ 𝑤 ) ∈ ℕ0 ) |
| 49 | 48 | nn0zd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( abs ‘ 𝑤 ) ∈ ℤ ) |
| 50 | breq2 | ⊢ ( 𝑥 = ( abs ‘ 𝑤 ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) | |
| 51 | 50 | ralbidv | ⊢ ( 𝑥 = ( abs ‘ 𝑤 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑥 = ( abs ‘ 𝑤 ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) ) |
| 53 | 49 52 | rspcedv | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 54 | 53 | imim2d | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) → ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
| 55 | 54 | ralimdva | ⊢ ( 𝐴 ⊆ ℤ → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( abs ‘ 𝑤 ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) ) |
| 56 | 45 55 | mpd | ⊢ ( 𝐴 ⊆ ℤ → ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 57 | r19.23v | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) | |
| 58 | 56 57 | sylib | ⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 59 | 58 | imp | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑤 ∈ 𝐴 𝑤 ≠ 0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 60 | 15 59 | sylan2b | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 61 | 13 60 | jca | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 ∈ 𝐴 𝑛 ≠ 0 ) → ( 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |