This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcllem2.1 | |- S = { z e. ZZ | A. n e. { M , N } z || n } |
|
| gcdcllem2.2 | |- R = { z e. ZZ | ( z || M /\ z || N ) } |
||
| Assertion | gcdcllem3 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) e. NN /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( R , RR , < ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcllem2.1 | |- S = { z e. ZZ | A. n e. { M , N } z || n } |
|
| 2 | gcdcllem2.2 | |- R = { z e. ZZ | ( z || M /\ z || N ) } |
|
| 3 | 2 | ssrab3 | |- R C_ ZZ |
| 4 | prssi | |- ( ( M e. ZZ /\ N e. ZZ ) -> { M , N } C_ ZZ ) |
|
| 5 | neorian | |- ( ( M =/= 0 \/ N =/= 0 ) <-> -. ( M = 0 /\ N = 0 ) ) |
|
| 6 | prid1g | |- ( M e. ZZ -> M e. { M , N } ) |
|
| 7 | neeq1 | |- ( n = M -> ( n =/= 0 <-> M =/= 0 ) ) |
|
| 8 | 7 | rspcev | |- ( ( M e. { M , N } /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 9 | 6 8 | sylan | |- ( ( M e. ZZ /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 10 | 9 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 11 | prid2g | |- ( N e. ZZ -> N e. { M , N } ) |
|
| 12 | neeq1 | |- ( n = N -> ( n =/= 0 <-> N =/= 0 ) ) |
|
| 13 | 12 | rspcev | |- ( ( N e. { M , N } /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 14 | 11 13 | sylan | |- ( ( N e. ZZ /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 15 | 14 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
| 16 | 10 15 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 \/ N =/= 0 ) ) -> E. n e. { M , N } n =/= 0 ) |
| 17 | 5 16 | sylan2br | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> E. n e. { M , N } n =/= 0 ) |
| 18 | 1 | gcdcllem1 | |- ( ( { M , N } C_ ZZ /\ E. n e. { M , N } n =/= 0 ) -> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) |
| 19 | 4 17 18 | syl2an2r | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) |
| 20 | 1 2 | gcdcllem2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> R = S ) |
| 21 | neeq1 | |- ( R = S -> ( R =/= (/) <-> S =/= (/) ) ) |
|
| 22 | raleq | |- ( R = S -> ( A. y e. R y <_ x <-> A. y e. S y <_ x ) ) |
|
| 23 | 22 | rexbidv | |- ( R = S -> ( E. x e. ZZ A. y e. R y <_ x <-> E. x e. ZZ A. y e. S y <_ x ) ) |
| 24 | 21 23 | anbi12d | |- ( R = S -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
| 25 | 20 24 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
| 26 | 25 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
| 27 | 19 26 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) ) |
| 28 | suprzcl2 | |- ( ( R C_ ZZ /\ R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) -> sup ( R , RR , < ) e. R ) |
|
| 29 | 3 28 | mp3an1 | |- ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) -> sup ( R , RR , < ) e. R ) |
| 30 | 27 29 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. R ) |
| 31 | 3 30 | sselid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. ZZ ) |
| 32 | 27 | simprd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> E. x e. ZZ A. y e. R y <_ x ) |
| 33 | 1dvds | |- ( M e. ZZ -> 1 || M ) |
|
| 34 | 1dvds | |- ( N e. ZZ -> 1 || N ) |
|
| 35 | 33 34 | anim12i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 1 || M /\ 1 || N ) ) |
| 36 | 1z | |- 1 e. ZZ |
|
| 37 | breq1 | |- ( z = 1 -> ( z || M <-> 1 || M ) ) |
|
| 38 | breq1 | |- ( z = 1 -> ( z || N <-> 1 || N ) ) |
|
| 39 | 37 38 | anbi12d | |- ( z = 1 -> ( ( z || M /\ z || N ) <-> ( 1 || M /\ 1 || N ) ) ) |
| 40 | 39 2 | elrab2 | |- ( 1 e. R <-> ( 1 e. ZZ /\ ( 1 || M /\ 1 || N ) ) ) |
| 41 | 36 40 | mpbiran | |- ( 1 e. R <-> ( 1 || M /\ 1 || N ) ) |
| 42 | 35 41 | sylibr | |- ( ( M e. ZZ /\ N e. ZZ ) -> 1 e. R ) |
| 43 | 42 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> 1 e. R ) |
| 44 | suprzub | |- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x /\ 1 e. R ) -> 1 <_ sup ( R , RR , < ) ) |
|
| 45 | 3 32 43 44 | mp3an2i | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> 1 <_ sup ( R , RR , < ) ) |
| 46 | elnnz1 | |- ( sup ( R , RR , < ) e. NN <-> ( sup ( R , RR , < ) e. ZZ /\ 1 <_ sup ( R , RR , < ) ) ) |
|
| 47 | 31 45 46 | sylanbrc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. NN ) |
| 48 | breq1 | |- ( x = sup ( R , RR , < ) -> ( x || M <-> sup ( R , RR , < ) || M ) ) |
|
| 49 | breq1 | |- ( x = sup ( R , RR , < ) -> ( x || N <-> sup ( R , RR , < ) || N ) ) |
|
| 50 | 48 49 | anbi12d | |- ( x = sup ( R , RR , < ) -> ( ( x || M /\ x || N ) <-> ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
| 51 | breq1 | |- ( z = x -> ( z || M <-> x || M ) ) |
|
| 52 | breq1 | |- ( z = x -> ( z || N <-> x || N ) ) |
|
| 53 | 51 52 | anbi12d | |- ( z = x -> ( ( z || M /\ z || N ) <-> ( x || M /\ x || N ) ) ) |
| 54 | 53 | cbvrabv | |- { z e. ZZ | ( z || M /\ z || N ) } = { x e. ZZ | ( x || M /\ x || N ) } |
| 55 | 2 54 | eqtri | |- R = { x e. ZZ | ( x || M /\ x || N ) } |
| 56 | 50 55 | elrab2 | |- ( sup ( R , RR , < ) e. R <-> ( sup ( R , RR , < ) e. ZZ /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
| 57 | 30 56 | sylib | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) e. ZZ /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
| 58 | 57 | simprd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) |
| 59 | breq1 | |- ( z = K -> ( z || M <-> K || M ) ) |
|
| 60 | breq1 | |- ( z = K -> ( z || N <-> K || N ) ) |
|
| 61 | 59 60 | anbi12d | |- ( z = K -> ( ( z || M /\ z || N ) <-> ( K || M /\ K || N ) ) ) |
| 62 | 61 2 | elrab2 | |- ( K e. R <-> ( K e. ZZ /\ ( K || M /\ K || N ) ) ) |
| 63 | 62 | biimpri | |- ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> K e. R ) |
| 64 | 63 | 3impb | |- ( ( K e. ZZ /\ K || M /\ K || N ) -> K e. R ) |
| 65 | suprzub | |- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x /\ K e. R ) -> K <_ sup ( R , RR , < ) ) |
|
| 66 | 65 | 3expia | |- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x ) -> ( K e. R -> K <_ sup ( R , RR , < ) ) ) |
| 67 | 3 66 | mpan | |- ( E. x e. ZZ A. y e. R y <_ x -> ( K e. R -> K <_ sup ( R , RR , < ) ) ) |
| 68 | 32 64 67 | syl2im | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( R , RR , < ) ) ) |
| 69 | 47 58 68 | 3jca | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) e. NN /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( R , RR , < ) ) ) ) |