This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprzub | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ⊆ ℤ ) | |
| 2 | zssre | ⊢ ℤ ⊆ ℝ | |
| 3 | 1 2 | sstrdi | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 5 | 3 4 | sseldd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 6 | 4 | ne0d | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 7 | simp2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 8 | suprzcl2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) | |
| 9 | 1 6 7 8 | syl3anc | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 10 | 3 9 | sseldd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 11 | ltso | ⊢ < Or ℝ | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → < Or ℝ ) |
| 13 | zsupss | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
| 14 | 1 6 7 13 | syl3anc | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 15 | ssrexv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) | |
| 16 | 3 14 15 | sylc | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 17 | 12 16 | supub | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 ) ) |
| 18 | 4 17 | mpd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 ) |
| 19 | 5 10 18 | nltled | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |