This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcllem2.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 } | |
| gcdcllem2.2 | ⊢ 𝑅 = { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } | ||
| Assertion | gcdcllem2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑅 = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcllem2.1 | ⊢ 𝑆 = { 𝑧 ∈ ℤ ∣ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 } | |
| 2 | gcdcllem2.2 | ⊢ 𝑅 = { 𝑧 ∈ ℤ ∣ ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) } | |
| 3 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀 ) ) | |
| 4 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁 ) ↔ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
| 6 | 5 2 | elrab2 | ⊢ ( 𝑥 ∈ 𝑅 ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
| 7 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∥ 𝑛 ↔ 𝑥 ∥ 𝑛 ) ) | |
| 8 | 7 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑧 ∥ 𝑛 ↔ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ) |
| 9 | 8 1 | elrab2 | ⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ) |
| 10 | breq2 | ⊢ ( 𝑛 = 𝑀 → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑀 ) ) | |
| 11 | breq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑁 ) ) | |
| 12 | 10 11 | ralprg | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ↔ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) |
| 13 | 12 | anbi2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑀 , 𝑁 } 𝑥 ∥ 𝑛 ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) ) |
| 14 | 9 13 | bitrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁 ) ) ) ) |
| 15 | 6 14 | bitr4id | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ 𝑆 ) ) |
| 16 | 15 | eqrdv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑅 = 𝑆 ) |