This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl avoids ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprzcl2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsupss | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
| 2 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 4 | ltso | ⊢ < Or ℝ | |
| 5 | 4 | a1i | ⊢ ( ⊤ → < Or ℝ ) |
| 6 | 5 | eqsup | ⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) = 𝑥 ) ) |
| 7 | 6 | mptru | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) = 𝑥 ) |
| 8 | 7 | 3expib | ⊢ ( 𝑥 ∈ ℝ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) = 𝑥 ) ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) = 𝑥 ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 11 | eleq1 | ⊢ ( sup ( 𝐴 , ℝ , < ) = 𝑥 → ( sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 12 | 10 11 | syl5ibrcom | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → ( sup ( 𝐴 , ℝ , < ) = 𝑥 → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) ) |
| 13 | 9 12 | syld | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) ) |
| 14 | 13 | rexlimdva | ⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) ) |
| 16 | 1 15 | mpd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |