This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzisoeu.h | ⊢ ( 𝜑 → 𝐻 ∈ Fin ) | |
| fzisoeu.or | ⊢ ( 𝜑 → < Or 𝐻 ) | ||
| fzisoeu.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fzisoeu.4 | ⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) | ||
| Assertion | fzisoeu | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzisoeu.h | ⊢ ( 𝜑 → 𝐻 ∈ Fin ) | |
| 2 | fzisoeu.or | ⊢ ( 𝜑 → < Or 𝐻 ) | |
| 3 | fzisoeu.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | fzisoeu.4 | ⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) | |
| 5 | fzssz | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ℤ | |
| 6 | zssre | ⊢ ℤ ⊆ ℝ | |
| 7 | 5 6 | sstri | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ℝ |
| 8 | ltso | ⊢ < Or ℝ | |
| 9 | soss | ⊢ ( ( 𝑀 ... 𝑁 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝑀 ... 𝑁 ) ) ) | |
| 10 | 7 8 9 | mp2 | ⊢ < Or ( 𝑀 ... 𝑁 ) |
| 11 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 12 | fz1iso | ⊢ ( ( < Or ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) |
| 14 | fveq2 | ⊢ ( 𝐻 = ∅ → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ∅ ) ) | |
| 15 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝐻 = ∅ → ( ♯ ‘ 𝐻 ) = 0 ) |
| 17 | 16 | oveq1d | ⊢ ( 𝐻 = ∅ → ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) = ( 0 + ( 𝑀 − 1 ) ) ) |
| 18 | 4 17 | eqtrid | ⊢ ( 𝐻 = ∅ → 𝑁 = ( 0 + ( 𝑀 − 1 ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝐻 = ∅ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) ) |
| 21 | 3 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 22 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 23 | 21 22 | subcld | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℂ ) |
| 24 | 23 | addlidd | ⊢ ( 𝜑 → ( 0 + ( 𝑀 − 1 ) ) = ( 𝑀 − 1 ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
| 26 | 3 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 27 | 26 | ltm1d | ⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 28 | peano2zm | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) | |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 30 | fzn | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) | |
| 31 | 3 29 30 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 32 | 27 31 | mpbid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
| 33 | 25 32 | eqtrd | ⊢ ( 𝜑 → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ∅ ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ∅ ) |
| 35 | eqcom | ⊢ ( 𝐻 = ∅ ↔ ∅ = 𝐻 ) | |
| 36 | 35 | biimpi | ⊢ ( 𝐻 = ∅ → ∅ = 𝐻 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ∅ = 𝐻 ) |
| 38 | 20 34 37 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... 𝑁 ) = 𝐻 ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 40 | 22 21 | pncan3d | ⊢ ( 𝜑 → ( 1 + ( 𝑀 − 1 ) ) = 𝑀 ) |
| 41 | 40 | eqcomd | ⊢ ( 𝜑 → 𝑀 = ( 1 + ( 𝑀 − 1 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 = ( 1 + ( 𝑀 − 1 ) ) ) |
| 43 | 1red | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 1 ∈ ℝ ) | |
| 44 | neqne | ⊢ ( ¬ 𝐻 = ∅ → 𝐻 ≠ ∅ ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝐻 ≠ ∅ ) |
| 46 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝐻 ∈ Fin ) |
| 47 | hashnncl | ⊢ ( 𝐻 ∈ Fin → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 49 | 45 48 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ 𝐻 ) ∈ ℕ ) |
| 50 | 49 | nnred | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ 𝐻 ) ∈ ℝ ) |
| 51 | 29 | zred | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 53 | 49 | nnge1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 1 ≤ ( ♯ ‘ 𝐻 ) ) |
| 54 | 43 50 52 53 | leadd1dd | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 1 + ( 𝑀 − 1 ) ) ≤ ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) ) |
| 55 | 54 4 | breqtrrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 1 + ( 𝑀 − 1 ) ) ≤ 𝑁 ) |
| 56 | 42 55 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 ≤ 𝑁 ) |
| 57 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 ∈ ℤ ) |
| 58 | hashcl | ⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) | |
| 59 | nn0z | ⊢ ( ( ♯ ‘ 𝐻 ) ∈ ℕ0 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) | |
| 60 | 1 58 59 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 61 | 60 29 | zaddcld | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) ∈ ℤ ) |
| 62 | 4 61 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑁 ∈ ℤ ) |
| 64 | eluz | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) | |
| 65 | 57 63 64 | syl2anc | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 66 | 56 65 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 67 | hashfz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑁 − 𝑀 ) + 1 ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑁 − 𝑀 ) + 1 ) ) |
| 69 | 4 | oveq1i | ⊢ ( 𝑁 − 𝑀 ) = ( ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) − 𝑀 ) |
| 70 | 1 58 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 71 | 70 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℂ ) |
| 72 | 71 23 21 | addsubassd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) ) |
| 73 | 69 72 | eqtrid | ⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) ) |
| 74 | 22 | negcld | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 75 | 21 22 | negsubd | ⊢ ( 𝜑 → ( 𝑀 + - 1 ) = ( 𝑀 − 1 ) ) |
| 76 | 75 | eqcomd | ⊢ ( 𝜑 → ( 𝑀 − 1 ) = ( 𝑀 + - 1 ) ) |
| 77 | 21 74 76 | mvrladdd | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) − 𝑀 ) = - 1 ) |
| 78 | 77 | oveq2d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) = ( ( ♯ ‘ 𝐻 ) + - 1 ) ) |
| 79 | 73 78 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + - 1 ) ) |
| 80 | 79 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( 𝑁 − 𝑀 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) ) |
| 82 | 71 22 | negsubd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + - 1 ) = ( ( ♯ ‘ 𝐻 ) − 1 ) ) |
| 83 | 82 | oveq1d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) − 1 ) + 1 ) ) |
| 84 | 71 22 | npcand | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 85 | 83 84 | eqtrd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 87 | 68 81 86 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 88 | 39 87 | pm2.61dan | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 89 | 88 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... ( ♯ ‘ 𝐻 ) ) ) |
| 90 | isoeq4 | ⊢ ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... ( ♯ ‘ 𝐻 ) ) → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ↔ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) | |
| 91 | 89 90 | syl | ⊢ ( 𝜑 → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ↔ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 92 | 91 | biimpd | ⊢ ( 𝜑 → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) → ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 93 | 92 | eximdv | ⊢ ( 𝜑 → ( ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 94 | 13 93 | mpi | ⊢ ( 𝜑 → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) |
| 95 | fz1iso | ⊢ ( ( < Or 𝐻 ∧ 𝐻 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) | |
| 96 | 2 1 95 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) |
| 97 | exdistrv | ⊢ ( ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ↔ ( ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) | |
| 98 | 94 96 97 | sylanbrc | ⊢ ( 𝜑 → ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) |
| 99 | isocnv | ⊢ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) → ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ) | |
| 100 | 99 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ) |
| 101 | simprr | ⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) | |
| 102 | isotr | ⊢ ( ( ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) | |
| 103 | 100 101 102 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 104 | 103 | ex | ⊢ ( 𝜑 → ( ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 105 | 104 | 2eximdv | ⊢ ( 𝜑 → ( ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 106 | 98 105 | mpd | ⊢ ( 𝜑 → ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 107 | vex | ⊢ 𝑔 ∈ V | |
| 108 | vex | ⊢ ℎ ∈ V | |
| 109 | 108 | cnvex | ⊢ ◡ ℎ ∈ V |
| 110 | 107 109 | coex | ⊢ ( 𝑔 ∘ ◡ ℎ ) ∈ V |
| 111 | isoeq1 | ⊢ ( 𝑓 = ( 𝑔 ∘ ◡ ℎ ) → ( 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ↔ ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) | |
| 112 | 110 111 | spcev | ⊢ ( ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 113 | 112 | a1i | ⊢ ( 𝜑 → ( ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 114 | 113 | exlimdvv | ⊢ ( 𝜑 → ( ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 115 | 106 114 | mpd | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 116 | ltwefz | ⊢ < We ( 𝑀 ... 𝑁 ) | |
| 117 | wemoiso | ⊢ ( < We ( 𝑀 ... 𝑁 ) → ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) | |
| 118 | 116 117 | mp1i | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 119 | df-eu | ⊢ ( ∃! 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ↔ ( ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ∧ ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) | |
| 120 | 115 118 119 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |