This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014) (Proof shortened by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 2 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | zsubcl | ⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 − 𝐴 ) ∈ ℤ ) | |
| 5 | 3 1 4 | sylancr | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 1 − 𝐴 ) ∈ ℤ ) |
| 6 | fzen | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 1 − 𝐴 ) ∈ ℤ ) → ( 𝐴 ... 𝐵 ) ≈ ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) ) | |
| 7 | 1 2 5 6 | syl3anc | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ... 𝐵 ) ≈ ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) ) |
| 8 | 1 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + ( 1 − 𝐴 ) ) = 1 ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + ( 1 − 𝐴 ) ) = 1 ) |
| 12 | 1cnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) | |
| 13 | 2 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 14 | 13 8 | subcld | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 15 | 13 12 8 | addsub12d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 − 𝐴 ) ) = ( 1 + ( 𝐵 − 𝐴 ) ) ) |
| 16 | 12 14 15 | comraddd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 − 𝐴 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
| 17 | 11 16 | oveq12d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) = ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) |
| 18 | 7 17 | breqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ... 𝐵 ) ≈ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) |
| 19 | hasheni | ⊢ ( ( 𝐴 ... 𝐵 ) ≈ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) ) |
| 21 | uznn0sub | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℕ0 ) | |
| 22 | peano2nn0 | ⊢ ( ( 𝐵 − 𝐴 ) ∈ ℕ0 → ( ( 𝐵 − 𝐴 ) + 1 ) ∈ ℕ0 ) | |
| 23 | hashfz1 | ⊢ ( ( ( 𝐵 − 𝐴 ) + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |