This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzisoeu.h | |- ( ph -> H e. Fin ) |
|
| fzisoeu.or | |- ( ph -> < Or H ) |
||
| fzisoeu.m | |- ( ph -> M e. ZZ ) |
||
| fzisoeu.4 | |- N = ( ( # ` H ) + ( M - 1 ) ) |
||
| Assertion | fzisoeu | |- ( ph -> E! f f Isom < , < ( ( M ... N ) , H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzisoeu.h | |- ( ph -> H e. Fin ) |
|
| 2 | fzisoeu.or | |- ( ph -> < Or H ) |
|
| 3 | fzisoeu.m | |- ( ph -> M e. ZZ ) |
|
| 4 | fzisoeu.4 | |- N = ( ( # ` H ) + ( M - 1 ) ) |
|
| 5 | fzssz | |- ( M ... N ) C_ ZZ |
|
| 6 | zssre | |- ZZ C_ RR |
|
| 7 | 5 6 | sstri | |- ( M ... N ) C_ RR |
| 8 | ltso | |- < Or RR |
|
| 9 | soss | |- ( ( M ... N ) C_ RR -> ( < Or RR -> < Or ( M ... N ) ) ) |
|
| 10 | 7 8 9 | mp2 | |- < Or ( M ... N ) |
| 11 | fzfi | |- ( M ... N ) e. Fin |
|
| 12 | fz1iso | |- ( ( < Or ( M ... N ) /\ ( M ... N ) e. Fin ) -> E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) ) |
|
| 13 | 10 11 12 | mp2an | |- E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) |
| 14 | fveq2 | |- ( H = (/) -> ( # ` H ) = ( # ` (/) ) ) |
|
| 15 | hash0 | |- ( # ` (/) ) = 0 |
|
| 16 | 14 15 | eqtrdi | |- ( H = (/) -> ( # ` H ) = 0 ) |
| 17 | 16 | oveq1d | |- ( H = (/) -> ( ( # ` H ) + ( M - 1 ) ) = ( 0 + ( M - 1 ) ) ) |
| 18 | 4 17 | eqtrid | |- ( H = (/) -> N = ( 0 + ( M - 1 ) ) ) |
| 19 | 18 | oveq2d | |- ( H = (/) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ H = (/) ) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
| 21 | 3 | zcnd | |- ( ph -> M e. CC ) |
| 22 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 23 | 21 22 | subcld | |- ( ph -> ( M - 1 ) e. CC ) |
| 24 | 23 | addlidd | |- ( ph -> ( 0 + ( M - 1 ) ) = ( M - 1 ) ) |
| 25 | 24 | oveq2d | |- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = ( M ... ( M - 1 ) ) ) |
| 26 | 3 | zred | |- ( ph -> M e. RR ) |
| 27 | 26 | ltm1d | |- ( ph -> ( M - 1 ) < M ) |
| 28 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 29 | 3 28 | syl | |- ( ph -> ( M - 1 ) e. ZZ ) |
| 30 | fzn | |- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
|
| 31 | 3 29 30 | syl2anc | |- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 32 | 27 31 | mpbid | |- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
| 33 | 25 32 | eqtrd | |- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
| 34 | 33 | adantr | |- ( ( ph /\ H = (/) ) -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
| 35 | eqcom | |- ( H = (/) <-> (/) = H ) |
|
| 36 | 35 | biimpi | |- ( H = (/) -> (/) = H ) |
| 37 | 36 | adantl | |- ( ( ph /\ H = (/) ) -> (/) = H ) |
| 38 | 20 34 37 | 3eqtrd | |- ( ( ph /\ H = (/) ) -> ( M ... N ) = H ) |
| 39 | 38 | fveq2d | |- ( ( ph /\ H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 40 | 22 21 | pncan3d | |- ( ph -> ( 1 + ( M - 1 ) ) = M ) |
| 41 | 40 | eqcomd | |- ( ph -> M = ( 1 + ( M - 1 ) ) ) |
| 42 | 41 | adantr | |- ( ( ph /\ -. H = (/) ) -> M = ( 1 + ( M - 1 ) ) ) |
| 43 | 1red | |- ( ( ph /\ -. H = (/) ) -> 1 e. RR ) |
|
| 44 | neqne | |- ( -. H = (/) -> H =/= (/) ) |
|
| 45 | 44 | adantl | |- ( ( ph /\ -. H = (/) ) -> H =/= (/) ) |
| 46 | 1 | adantr | |- ( ( ph /\ -. H = (/) ) -> H e. Fin ) |
| 47 | hashnncl | |- ( H e. Fin -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ -. H = (/) ) -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
| 49 | 45 48 | mpbird | |- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. NN ) |
| 50 | 49 | nnred | |- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. RR ) |
| 51 | 29 | zred | |- ( ph -> ( M - 1 ) e. RR ) |
| 52 | 51 | adantr | |- ( ( ph /\ -. H = (/) ) -> ( M - 1 ) e. RR ) |
| 53 | 49 | nnge1d | |- ( ( ph /\ -. H = (/) ) -> 1 <_ ( # ` H ) ) |
| 54 | 43 50 52 53 | leadd1dd | |- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ ( ( # ` H ) + ( M - 1 ) ) ) |
| 55 | 54 4 | breqtrrdi | |- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ N ) |
| 56 | 42 55 | eqbrtrd | |- ( ( ph /\ -. H = (/) ) -> M <_ N ) |
| 57 | 3 | adantr | |- ( ( ph /\ -. H = (/) ) -> M e. ZZ ) |
| 58 | hashcl | |- ( H e. Fin -> ( # ` H ) e. NN0 ) |
|
| 59 | nn0z | |- ( ( # ` H ) e. NN0 -> ( # ` H ) e. ZZ ) |
|
| 60 | 1 58 59 | 3syl | |- ( ph -> ( # ` H ) e. ZZ ) |
| 61 | 60 29 | zaddcld | |- ( ph -> ( ( # ` H ) + ( M - 1 ) ) e. ZZ ) |
| 62 | 4 61 | eqeltrid | |- ( ph -> N e. ZZ ) |
| 63 | 62 | adantr | |- ( ( ph /\ -. H = (/) ) -> N e. ZZ ) |
| 64 | eluz | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
|
| 65 | 57 63 64 | syl2anc | |- ( ( ph /\ -. H = (/) ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
| 66 | 56 65 | mpbird | |- ( ( ph /\ -. H = (/) ) -> N e. ( ZZ>= ` M ) ) |
| 67 | hashfz | |- ( N e. ( ZZ>= ` M ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
|
| 68 | 66 67 | syl | |- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
| 69 | 4 | oveq1i | |- ( N - M ) = ( ( ( # ` H ) + ( M - 1 ) ) - M ) |
| 70 | 1 58 | syl | |- ( ph -> ( # ` H ) e. NN0 ) |
| 71 | 70 | nn0cnd | |- ( ph -> ( # ` H ) e. CC ) |
| 72 | 71 23 21 | addsubassd | |- ( ph -> ( ( ( # ` H ) + ( M - 1 ) ) - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
| 73 | 69 72 | eqtrid | |- ( ph -> ( N - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
| 74 | 22 | negcld | |- ( ph -> -u 1 e. CC ) |
| 75 | 21 22 | negsubd | |- ( ph -> ( M + -u 1 ) = ( M - 1 ) ) |
| 76 | 75 | eqcomd | |- ( ph -> ( M - 1 ) = ( M + -u 1 ) ) |
| 77 | 21 74 76 | mvrladdd | |- ( ph -> ( ( M - 1 ) - M ) = -u 1 ) |
| 78 | 77 | oveq2d | |- ( ph -> ( ( # ` H ) + ( ( M - 1 ) - M ) ) = ( ( # ` H ) + -u 1 ) ) |
| 79 | 73 78 | eqtrd | |- ( ph -> ( N - M ) = ( ( # ` H ) + -u 1 ) ) |
| 80 | 79 | oveq1d | |- ( ph -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
| 81 | 80 | adantr | |- ( ( ph /\ -. H = (/) ) -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
| 82 | 71 22 | negsubd | |- ( ph -> ( ( # ` H ) + -u 1 ) = ( ( # ` H ) - 1 ) ) |
| 83 | 82 | oveq1d | |- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( ( ( # ` H ) - 1 ) + 1 ) ) |
| 84 | 71 22 | npcand | |- ( ph -> ( ( ( # ` H ) - 1 ) + 1 ) = ( # ` H ) ) |
| 85 | 83 84 | eqtrd | |- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
| 86 | 85 | adantr | |- ( ( ph /\ -. H = (/) ) -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
| 87 | 68 81 86 | 3eqtrd | |- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 88 | 39 87 | pm2.61dan | |- ( ph -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 89 | 88 | oveq2d | |- ( ph -> ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) ) |
| 90 | isoeq4 | |- ( ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
|
| 91 | 89 90 | syl | |- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 92 | 91 | biimpd | |- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 93 | 92 | eximdv | |- ( ph -> ( E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 94 | 13 93 | mpi | |- ( ph -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) |
| 95 | fz1iso | |- ( ( < Or H /\ H e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
|
| 96 | 2 1 95 | syl2anc | |- ( ph -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
| 97 | exdistrv | |- ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) <-> ( E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
|
| 98 | 94 96 97 | sylanbrc | |- ( ph -> E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
| 99 | isocnv | |- ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
|
| 100 | 99 | ad2antrl | |- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
| 101 | simprr | |- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
|
| 102 | isotr | |- ( ( `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
|
| 103 | 100 101 102 | syl2anc | |- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
| 104 | 103 | ex | |- ( ph -> ( ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
| 105 | 104 | 2eximdv | |- ( ph -> ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
| 106 | 98 105 | mpd | |- ( ph -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
| 107 | vex | |- g e. _V |
|
| 108 | vex | |- h e. _V |
|
| 109 | 108 | cnvex | |- `' h e. _V |
| 110 | 107 109 | coex | |- ( g o. `' h ) e. _V |
| 111 | isoeq1 | |- ( f = ( g o. `' h ) -> ( f Isom < , < ( ( M ... N ) , H ) <-> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
|
| 112 | 110 111 | spcev | |- ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
| 113 | 112 | a1i | |- ( ph -> ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
| 114 | 113 | exlimdvv | |- ( ph -> ( E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
| 115 | 106 114 | mpd | |- ( ph -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
| 116 | ltwefz | |- < We ( M ... N ) |
|
| 117 | wemoiso | |- ( < We ( M ... N ) -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
|
| 118 | 116 117 | mp1i | |- ( ph -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
| 119 | df-eu | |- ( E! f f Isom < , < ( ( M ... N ) , H ) <-> ( E. f f Isom < , < ( ( M ... N ) , H ) /\ E* f f Isom < , < ( ( M ... N ) , H ) ) ) |
|
| 120 | 115 118 119 | sylanbrc | |- ( ph -> E! f f Isom < , < ( ( M ... N ) , H ) ) |