This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu . (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wemoiso | ⊢ ( 𝑅 We 𝐴 → ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑅 We 𝐴 ) | |
| 2 | vex | ⊢ 𝑓 ∈ V | |
| 3 | isof1o | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 4 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 6 | dmfex | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) | |
| 7 | 2 5 6 | sylancr | ⊢ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐴 ∈ V ) |
| 8 | 7 | ad2antrl | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐴 ∈ V ) |
| 9 | exse | ⊢ ( 𝐴 ∈ V → 𝑅 Se 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑅 Se 𝐴 ) |
| 11 | 1 10 | jca | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 12 | weisoeq | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) | |
| 13 | 11 12 | sylancom | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝑓 = 𝑔 ) |
| 14 | 13 | ex | ⊢ ( 𝑅 We 𝐴 → ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 15 | 14 | alrimivv | ⊢ ( 𝑅 We 𝐴 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 16 | isoeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) | |
| 17 | 16 | mo4 | ⊢ ( ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑔 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → 𝑓 = 𝑔 ) ) |
| 18 | 15 17 | sylibr | ⊢ ( 𝑅 We 𝐴 → ∃* 𝑓 𝑓 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |