This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | ||
| fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | ||
| fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | ||
| fucoppc.t | ⊢ 𝑇 = ( CatCat ‘ 𝑈 ) | ||
| fucoppc.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | ||
| fucoppc.i | ⊢ 𝐼 = ( Iso ‘ 𝑇 ) | ||
| fucoppc.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| fucoppc.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| fucoppc.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | ||
| fucoppc.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) | ||
| Assertion | fucoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑅 𝐼 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 4 | fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | |
| 5 | fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | |
| 6 | fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 7 | fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 8 | fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 9 | fucoppc.t | ⊢ 𝑇 = ( CatCat ‘ 𝑈 ) | |
| 10 | fucoppc.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| 11 | fucoppc.i | ⊢ 𝐼 = ( Iso ‘ 𝑇 ) | |
| 12 | fucoppc.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 13 | fucoppc.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 14 | fucoppc.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | |
| 15 | fucoppc.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) | |
| 16 | 3 | fucbas | ⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 17 | 4 16 | oppcbas | ⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑅 ) |
| 18 | 5 | fucbas | ⊢ ( 𝑂 Func 𝑃 ) = ( Base ‘ 𝑆 ) |
| 19 | eqid | ⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) | |
| 20 | eqid | ⊢ ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 ) | |
| 21 | 5 20 | fuchom | ⊢ ( 𝑂 Nat 𝑃 ) = ( Hom ‘ 𝑆 ) |
| 22 | eqid | ⊢ ( Id ‘ 𝑅 ) = ( Id ‘ 𝑅 ) | |
| 23 | eqid | ⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) | |
| 24 | eqid | ⊢ ( comp ‘ 𝑅 ) = ( comp ‘ 𝑅 ) | |
| 25 | eqid | ⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) | |
| 26 | 9 10 | elbasfv | ⊢ ( 𝑅 ∈ 𝐵 → 𝑈 ∈ V ) |
| 27 | 14 26 | syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 28 | 9 10 27 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 29 | 14 28 | eleqtrd | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑈 ∩ Cat ) ) |
| 30 | 29 | elin2d | ⊢ ( 𝜑 → 𝑅 ∈ Cat ) |
| 31 | 15 28 | eleqtrd | ⊢ ( 𝜑 → 𝑆 ∈ ( 𝑈 ∩ Cat ) ) |
| 32 | 31 | elin2d | ⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 33 | 1 2 12 13 | oppff1o | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) |
| 34 | 7 | f1oeq1d | ⊢ ( 𝜑 → ( 𝐹 : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ↔ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) ) |
| 35 | 33 34 | mpbird | ⊢ ( 𝜑 → 𝐹 : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) |
| 36 | f1of | ⊢ ( 𝐹 : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) → 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) |
| 38 | eqid | ⊢ ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) | |
| 39 | ovex | ⊢ ( 𝑦 𝑁 𝑥 ) ∈ V | |
| 40 | resiexg | ⊢ ( ( 𝑦 𝑁 𝑥 ) ∈ V → ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ∈ V ) | |
| 41 | 39 40 | ax-mp | ⊢ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ∈ V |
| 42 | 38 41 | fnmpoi | ⊢ ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) Fn ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) |
| 43 | 8 | fneq1d | ⊢ ( 𝜑 → ( 𝐺 Fn ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) Fn ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
| 44 | 42 43 | mpbiri | ⊢ ( 𝜑 → 𝐺 Fn ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ) |
| 45 | f1oi | ⊢ ( I ↾ ( 𝑔 𝑁 𝑓 ) ) : ( 𝑔 𝑁 𝑓 ) –1-1-onto→ ( 𝑔 𝑁 𝑓 ) | |
| 46 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 47 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 48 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 49 | 46 47 48 | opf2fval | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( 𝑓 𝐺 𝑔 ) = ( I ↾ ( 𝑔 𝑁 𝑓 ) ) ) |
| 50 | 3 6 | fuchom | ⊢ 𝑁 = ( Hom ‘ 𝑄 ) |
| 51 | 50 4 | oppchom | ⊢ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) = ( 𝑔 𝑁 𝑓 ) |
| 52 | 51 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) = ( 𝑔 𝑁 𝑓 ) ) |
| 53 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 54 | 1 2 6 53 47 48 | fucoppclem | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( 𝑔 𝑁 𝑓 ) = ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) |
| 55 | 54 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) = ( 𝑔 𝑁 𝑓 ) ) |
| 56 | 49 52 55 | f1oeq123d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ↔ ( I ↾ ( 𝑔 𝑁 𝑓 ) ) : ( 𝑔 𝑁 𝑓 ) –1-1-onto→ ( 𝑔 𝑁 𝑓 ) ) ) |
| 57 | 45 56 | mpbiri | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) |
| 58 | f1of | ⊢ ( ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) → ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ⟶ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ⟶ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) |
| 60 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 61 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 62 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 63 | 1 2 3 4 5 6 60 61 62 | fucoppcid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( 𝑓 𝐺 𝑓 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑓 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
| 64 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑘 ∈ ( 𝐶 Func 𝐷 ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) ) → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 65 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑘 ∈ ( 𝐶 Func 𝐷 ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) ) → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 66 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑘 ∈ ( 𝐶 Func 𝐷 ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) ) → 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ) | |
| 67 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑘 ∈ ( 𝐶 Func 𝐷 ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) ) → 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) | |
| 68 | 1 2 3 4 5 6 64 65 66 67 | fucoppcco | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑘 ∈ ( 𝐶 Func 𝐷 ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑔 ( Hom ‘ 𝑅 ) 𝑘 ) ) ) → ( ( 𝑓 𝐺 𝑘 ) ‘ ( 𝑏 ( 〈 𝑓 , 𝑔 〉 ( comp ‘ 𝑅 ) 𝑘 ) 𝑎 ) ) = ( ( ( 𝑔 𝐺 𝑘 ) ‘ 𝑏 ) ( 〈 ( 𝐹 ‘ 𝑓 ) , ( 𝐹 ‘ 𝑔 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑘 ) ) ( ( 𝑓 𝐺 𝑔 ) ‘ 𝑎 ) ) ) |
| 69 | 17 18 19 21 22 23 24 25 30 32 37 44 59 63 68 | isfuncd | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| 70 | 57 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) |
| 71 | 17 19 21 | isffth2 | ⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ↔ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ∧ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( 𝑓 𝐺 𝑔 ) : ( 𝑓 ( Hom ‘ 𝑅 ) 𝑔 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑓 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑔 ) ) ) ) |
| 72 | 69 70 71 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |
| 73 | df-br | ⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) | |
| 74 | 72 73 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) |
| 75 | 69 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 76 | 75 | f1oeq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ↔ 𝐹 : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) ) |
| 77 | 35 76 | mpbird | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) |
| 78 | 9 10 17 18 27 14 15 11 | catciso | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 𝐼 𝑆 ) ↔ ( 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ∧ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) ) ) |
| 79 | 74 77 78 | mpbir2and | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 𝐼 𝑆 ) ) |
| 80 | df-br | ⊢ ( 𝐹 ( 𝑅 𝐼 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 𝐼 𝑆 ) ) | |
| 81 | 79 80 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝑅 𝐼 𝑆 ) 𝐺 ) |