This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | |- O = ( oppCat ` C ) |
|
| fucoppc.p | |- P = ( oppCat ` D ) |
||
| fucoppc.q | |- Q = ( C FuncCat D ) |
||
| fucoppc.r | |- R = ( oppCat ` Q ) |
||
| fucoppc.s | |- S = ( O FuncCat P ) |
||
| fucoppc.n | |- N = ( C Nat D ) |
||
| fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
||
| fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
||
| fucoppc.t | |- T = ( CatCat ` U ) |
||
| fucoppc.b | |- B = ( Base ` T ) |
||
| fucoppc.i | |- I = ( Iso ` T ) |
||
| fucoppc.c | |- ( ph -> C e. V ) |
||
| fucoppc.d | |- ( ph -> D e. W ) |
||
| fucoppc.1 | |- ( ph -> R e. B ) |
||
| fucoppc.2 | |- ( ph -> S e. B ) |
||
| Assertion | fucoppc | |- ( ph -> F ( R I S ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fucoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fucoppc.q | |- Q = ( C FuncCat D ) |
|
| 4 | fucoppc.r | |- R = ( oppCat ` Q ) |
|
| 5 | fucoppc.s | |- S = ( O FuncCat P ) |
|
| 6 | fucoppc.n | |- N = ( C Nat D ) |
|
| 7 | fucoppc.f | |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
|
| 8 | fucoppc.g | |- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
|
| 9 | fucoppc.t | |- T = ( CatCat ` U ) |
|
| 10 | fucoppc.b | |- B = ( Base ` T ) |
|
| 11 | fucoppc.i | |- I = ( Iso ` T ) |
|
| 12 | fucoppc.c | |- ( ph -> C e. V ) |
|
| 13 | fucoppc.d | |- ( ph -> D e. W ) |
|
| 14 | fucoppc.1 | |- ( ph -> R e. B ) |
|
| 15 | fucoppc.2 | |- ( ph -> S e. B ) |
|
| 16 | 3 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 17 | 4 16 | oppcbas | |- ( C Func D ) = ( Base ` R ) |
| 18 | 5 | fucbas | |- ( O Func P ) = ( Base ` S ) |
| 19 | eqid | |- ( Hom ` R ) = ( Hom ` R ) |
|
| 20 | eqid | |- ( O Nat P ) = ( O Nat P ) |
|
| 21 | 5 20 | fuchom | |- ( O Nat P ) = ( Hom ` S ) |
| 22 | eqid | |- ( Id ` R ) = ( Id ` R ) |
|
| 23 | eqid | |- ( Id ` S ) = ( Id ` S ) |
|
| 24 | eqid | |- ( comp ` R ) = ( comp ` R ) |
|
| 25 | eqid | |- ( comp ` S ) = ( comp ` S ) |
|
| 26 | 9 10 | elbasfv | |- ( R e. B -> U e. _V ) |
| 27 | 14 26 | syl | |- ( ph -> U e. _V ) |
| 28 | 9 10 27 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 29 | 14 28 | eleqtrd | |- ( ph -> R e. ( U i^i Cat ) ) |
| 30 | 29 | elin2d | |- ( ph -> R e. Cat ) |
| 31 | 15 28 | eleqtrd | |- ( ph -> S e. ( U i^i Cat ) ) |
| 32 | 31 | elin2d | |- ( ph -> S e. Cat ) |
| 33 | 1 2 12 13 | oppff1o | |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 34 | 7 | f1oeq1d | |- ( ph -> ( F : ( C Func D ) -1-1-onto-> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) |
| 35 | 33 34 | mpbird | |- ( ph -> F : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 36 | f1of | |- ( F : ( C Func D ) -1-1-onto-> ( O Func P ) -> F : ( C Func D ) --> ( O Func P ) ) |
|
| 37 | 35 36 | syl | |- ( ph -> F : ( C Func D ) --> ( O Func P ) ) |
| 38 | eqid | |- ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) |
|
| 39 | ovex | |- ( y N x ) e. _V |
|
| 40 | resiexg | |- ( ( y N x ) e. _V -> ( _I |` ( y N x ) ) e. _V ) |
|
| 41 | 39 40 | ax-mp | |- ( _I |` ( y N x ) ) e. _V |
| 42 | 38 41 | fnmpoi | |- ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) Fn ( ( C Func D ) X. ( C Func D ) ) |
| 43 | 8 | fneq1d | |- ( ph -> ( G Fn ( ( C Func D ) X. ( C Func D ) ) <-> ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) Fn ( ( C Func D ) X. ( C Func D ) ) ) ) |
| 44 | 42 43 | mpbiri | |- ( ph -> G Fn ( ( C Func D ) X. ( C Func D ) ) ) |
| 45 | f1oi | |- ( _I |` ( g N f ) ) : ( g N f ) -1-1-onto-> ( g N f ) |
|
| 46 | 8 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 47 | simprl | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> f e. ( C Func D ) ) |
|
| 48 | simprr | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> g e. ( C Func D ) ) |
|
| 49 | 46 47 48 | opf2fval | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) = ( _I |` ( g N f ) ) ) |
| 50 | 3 6 | fuchom | |- N = ( Hom ` Q ) |
| 51 | 50 4 | oppchom | |- ( f ( Hom ` R ) g ) = ( g N f ) |
| 52 | 51 | a1i | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f ( Hom ` R ) g ) = ( g N f ) ) |
| 53 | 7 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 54 | 1 2 6 53 47 48 | fucoppclem | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( g N f ) = ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 55 | 54 | eqcomd | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) = ( g N f ) ) |
| 56 | 49 52 55 | f1oeq123d | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) <-> ( _I |` ( g N f ) ) : ( g N f ) -1-1-onto-> ( g N f ) ) ) |
| 57 | 45 56 | mpbiri | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 58 | f1of | |- ( ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) --> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
|
| 59 | 57 58 | syl | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) --> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 60 | 7 | adantr | |- ( ( ph /\ f e. ( C Func D ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 61 | 8 | adantr | |- ( ( ph /\ f e. ( C Func D ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 62 | simpr | |- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
|
| 63 | 1 2 3 4 5 6 60 61 62 | fucoppcid | |- ( ( ph /\ f e. ( C Func D ) ) -> ( ( f G f ) ` ( ( Id ` R ) ` f ) ) = ( ( Id ` S ) ` ( F ` f ) ) ) |
| 64 | 7 | 3ad2ant1 | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 65 | 8 | 3ad2ant1 | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 66 | simp3l | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> a e. ( f ( Hom ` R ) g ) ) |
|
| 67 | simp3r | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> b e. ( g ( Hom ` R ) k ) ) |
|
| 68 | 1 2 3 4 5 6 64 65 66 67 | fucoppcco | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> ( ( f G k ) ` ( b ( <. f , g >. ( comp ` R ) k ) a ) ) = ( ( ( g G k ) ` b ) ( <. ( F ` f ) , ( F ` g ) >. ( comp ` S ) ( F ` k ) ) ( ( f G g ) ` a ) ) ) |
| 69 | 17 18 19 21 22 23 24 25 30 32 37 44 59 63 68 | isfuncd | |- ( ph -> F ( R Func S ) G ) |
| 70 | 57 | ralrimivva | |- ( ph -> A. f e. ( C Func D ) A. g e. ( C Func D ) ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 71 | 17 19 21 | isffth2 | |- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> ( F ( R Func S ) G /\ A. f e. ( C Func D ) A. g e. ( C Func D ) ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) ) |
| 72 | 69 70 71 | sylanbrc | |- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |
| 73 | df-br | |- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
|
| 74 | 72 73 | sylib | |- ( ph -> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 75 | 69 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 76 | 75 | f1oeq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) <-> F : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) |
| 77 | 35 76 | mpbird | |- ( ph -> ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 78 | 9 10 17 18 27 14 15 11 | catciso | |- ( ph -> ( <. F , G >. e. ( R I S ) <-> ( <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) /\ ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) ) |
| 79 | 74 77 78 | mpbir2and | |- ( ph -> <. F , G >. e. ( R I S ) ) |
| 80 | df-br | |- ( F ( R I S ) G <-> <. F , G >. e. ( R I S ) ) |
|
| 81 | 79 80 | sylibr | |- ( ph -> F ( R I S ) G ) |